|
|
|
![]() |
|
Strumenti |
![]() |
#1 |
Bannato
Iscritto dal: Aug 2001
Città: Berghem Haven
Messaggi: 13513
|
Realizzata "memoria" quantistica: 20% di successo
E 20% è UN BEL PO' in questo campo così pionieristico
![]() http://physicsworld.com/cws/article/...24F7111DB14C3A ![]() Physicists in the US are the first to store two entangled quantum states in a memory device and then retrieve the states with their entanglement intact. Their demonstration, which involves "stopping" photons in an ultracold atomic gas, could be an important step towards the practical implementation of quantum computers. The basic unit of information in a quantum computer is the qubit, which can take the value 0, 1 or—unlike a classical bit — a superposition of 0 and 1 together. A photon could be used as a qubit, for example, with its "up" and "down" polarization states representing 0 or 1. If many of these qubits are combined or “entangled” together in a quantum computer, they could be processed simultaneously and allow the device to work exponentially faster than its classical counterpart for certain operations. Entanglement could also play an important role in the secure transmission of information because the act of interception would destroy entanglement and reveal the presence of an eavesdropper. Fragile states However, this fragile nature of entanglement has so far prevented physicists from making practical quantum information systems. Now, a team of physicists at the California Institute of Technology led by Jeff Kimble has taken a step towards this goal by working out a way to store two entangled photon states in separate regions of an extremely cold gas of caesium atoms (Nature 452 67). The entangled states are made by firing a single photon at a beam splitter, in which half the light is deflected left into one beam, and the other half deflected right to form a second beam. These two beams are parallel, separated by about 1 mm and contain a pair of entangled photon states—one state in the left beam and the other in the right. Slow-moving hologram Once inside the cloud, a hologram-like imprint of the two entangled photon states on the quantum states of the atoms can be created using an effect called electromagnetically-induced transparency (EIT). This imprint moves through the gas many orders or magnitude more slowly than the speed of light, effectively “stopping” the entangled states for as long as 8 µs. EIT is initiated by a control laser that is shone through the gas to create the holograms. Then, the laser is switched off, which causes the photon states to vanish leaving the holograms. Then the control laser is switched back on, which recreates the entangled photon states from the holograms. The storage time can be changed by simply varying the time that the laser is off. When the recreated entangled photon states leave the atomic gas, one of the states passes through a device that shifts its phase, while the other does not. The two states then recombine at a detector. If the states remain entangled, adjusting their relative phase would create a series of bright and dark quantum interference effects at the detector. 20% entangled By repeating the experiment for a large number of single photons and measuring the interference intensity, the team concluded that about 20% of the entangled photon states were recovered from the atomic gas. While this might seem like a poor success rate, it is good by quantum-computing standards where entanglement efficiencies of 1-2% are common. According to Lene Hau of Harvard University, who pioneered EIT, the Caltech technique could be improved by cooling the atomic gas below the current 125 mK to create a Bose-Einstein condensate in which all the atoms are in a single coherent quantum state. Sharing secrets Hau also believes that the Caltech memory device could be modified to store the entangled states in two different atomic gases. This, she says, would allow quantum keys to be shared securely between users of a quantum encryption system. The storage and retrieval of individual photons in an atomic gas was first demonstrated in 2005 by two independent groups—one led by Hau and the other working at the Georgia Institute of Technology. The ability to store photons without destroying entanglement is crucial for the transport of single photons over large distances, where the memories would work as quantum repeater that would boost the optical signal without destroying the quantum nature of the signal. |
![]() |
![]() |
![]() |
#2 |
Bannato
Iscritto dal: Aug 2001
Città: Berghem Haven
Messaggi: 13513
|
Ma non interessa a nessuno?
![]() |
![]() |
![]() |
![]() |
#3 |
Senior Member
Iscritto dal: Jun 2007
Messaggi: 1624
|
A me interessa, ma non lo riesco a capirlo (nonostante sappia l'inglese abbastanza bene, gli articoli scientifici mi restano indecifrabili), cmq una domanda:
se un qbit può assumere contemporaneamente 0 e 1, come farà poi a ricostruire correttamente l'informazione |
![]() |
![]() |
![]() |
#4 |
Bannato
Iscritto dal: Aug 2001
Città: Berghem Haven
Messaggi: 13513
|
|
![]() |
![]() |
![]() |
#5 |
Senior Member
Iscritto dal: Jun 2007
Messaggi: 1624
|
ok, mi mancava la conoscenza del terzo postulato ( a dire il vero mi manca ancora...però vedo che c'è una spiegazione )....altra domanda quale è il vantaggia di una memoria quantistica invece di una tradizionale? Non la capienza perchè in fase di misurazione sempre un 1 o uno 0 si può ottenere, proprio come un bit normale...la velocità forse?
|
![]() |
![]() |
![]() |
#6 | |
Senior Member
Iscritto dal: Jul 2002
Città: Reggio Calabria -> London
Messaggi: 12093
|
Quote:
![]() invece è proprio la "capienza" dato che può memorizzare lo stato entangled del qubit, ovvero la sovrapposizione dei valori che esso contiene, mentre le memorie normali sono limitate a memorizzare solo uno zero o un uno. In questo modo è possibile memorizzare i qubit, cosa altrimenti non possibile, e quindi il numero di applicazioni per i quantum computer cresce di molto ![]()
__________________
![]() |
|
![]() |
![]() |
![]() |
#7 |
Bannato
Iscritto dal: Aug 2001
Città: Berghem Haven
Messaggi: 13513
|
|
![]() |
![]() |
![]() |
#8 |
Senior Member
Iscritto dal: Apr 2003
Città: Torino
Messaggi: 6835
|
Mi piace la frase al fondo.. quella in cui non si accontentano dei 125mK
![]() In ogni caso, mi sfugge la storia dell'ologramma.. ![]() |
![]() |
![]() |
![]() |
#9 | |
Senior Member
Iscritto dal: Jul 2002
Città: Reggio Calabria -> London
Messaggi: 12093
|
Quote:
Per quanto riguarda la trasparenza indotta per via elettromagnetica invece sinceramente non ho idea.. Dal nome così ad occhio sembrerebbe qualcosa di simile agli eseperimenti fatti per rallentare o congelare la luce utilizzando immagino mezzi trasmissivi ad elevata densità....
__________________
![]() |
|
![]() |
![]() |
![]() |
#10 |
Senior Member
Iscritto dal: Aug 2005
Messaggi: 2052
|
Ottimo, ma siamo ancora distanti da una applicazione pratica...
Pensate a un discorso del 2025 tra due nerdoni: " Ehi, a che temperatura tieni la q-mem?" " Io? Nah, la tengo sempre alla temperatura di default, circa 0,0004 nK.. Sai che vendono un q-dissi che la porta a 0,0000004 nk! ![]() ![]()
__________________
ciao |
![]() |
![]() |
![]() |
Strumenti | |
|
|
Tutti gli orari sono GMT +1. Ora sono le: 14:15.