Torna indietro   Hardware Upgrade Forum > Off Topic > Discussioni Off Topic > Scienza e tecnica

Motorola razr 60 Ultra: il migliore! Peccato per l’AI un po’ ''zoppa''. Recensione
Motorola razr 60 Ultra: il migliore! Peccato per l’AI un po’ ''zoppa''. Recensione
Motorola rinnova i suoi smartphone pieghevoli e abbiamo avuto modo di mettere sotto torchio questo nuovo razr 60 Ultra, flagship della serie, che cambia alcune cose migliorando in molti aspetti e soprattutto divenendo, aspettando Samsung e gli altri, il pieghevole a conchiglia perfetto. Peccato la mancanza di Moto AI in italiano.
AWS Summit Milano 2025: accelerare sull'IA per liberare il potenziale delle imprese italiane
AWS Summit Milano 2025: accelerare sull'IA per liberare il potenziale delle imprese italiane
Dal palco dell’AWS Summit Milano 2025 arriva un appello chiaro: accelerare sull’adozione dell’intelligenza artificiale. Tecnologie mature, casi d’uso concreti e nuove competenze al centro della trasformazione. Il cloud come abilitatore, tra infrastruttura, dati e sicurezza
Recensione HONOR Pad 10: a questo prezzo fa tremare la concorrenza
Recensione HONOR Pad 10: a questo prezzo fa tremare la concorrenza
HONOR Pad 10 è una fra le nuove proposte più convincenti nel mercato dei tablet Android, e offre al suo utente un display 2,5K da 12,1 pollici con frequenza di aggiornamento a 120Hz, design dalle dimensioni compatte e un ottimo processore. Il tutto mantenendo un prezzo accessibile che lo posiziona come alternativa credibile ai tablet premium del mercato, anche di Apple.
Tutti gli articoli Tutte le news

Vai al Forum
Rispondi
 
Strumenti
Old 26-05-2004, 14:26   #1
dooka
Senior Member
 
L'Avatar di dooka
 
Iscritto dal: Dec 2001
Città: Castelnuovo R. (MO) Nato: 05/02/1984
Messaggi: 1683
Analisi, definizione di Integrale

Qual'è la definizione di integrale, integrale di Reimann e integrale come limite della sommatoria?

thx
__________________
iMac 20" C2D .. MacBook Air /w SSD .. iPhone 4
dooka è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 15:03   #2
gtr84
Senior Member
 
L'Avatar di gtr84
 
Iscritto dal: Nov 2003
Città: Brindisi
Messaggi: 872
l'integrale, detto in maniera generale, è un numero, o sempre una funzione che dipende da 1 variablie in meno rispetto alla funzione integranda.

con integrale, di una funzione convergente, si può indicare l'area che essa sottende in un determinato dominio della, o delle, variabili indipententi della funzione.
l'area può avere un significato puramente geometrico, che però può riguardare la statistica, la fisica ecc; ciò a seconda di cosa rappresenta la funzione.

ad esempio, in statistica, se si ha una funzione che determina, al variare delle variabili indipententi, la densità della probabilità con cui si può manifestare un fenomeno, l'integrale di quella funzione su in certo intervallo delle variabili indipententi, indica numericamente la probabilità con cui si manifesterebbe lo stesso fenomeno nel medesimo intervallo di integrazione.

il concetto di funzione Riemann integrabile è strettamente legato al a quello di limite di una serie convergente.

già al liceo, per spiegare il significato di integrale definito di una funzione, si disegna un'area, e la si frammenta in tanti rettangoli, quelli che tangono la funzione da "sotto" a quelli che tangono la funzione da "sopra". la somma delle aree dei primi, ovviamente, è minore della somma delle aree dei secondi. E' facile pensare però, che più sono piccole le basi dei rettangoli (detti anche trapezoidi) (l'i-esimo rettangolo piccolo e l'i-esimo rettangolo grande hanno base in comune) più la differenza di area tra le due sommatorie diventa piccola. quindi, se faccio il limite per h (dove h è l'ampiezza della base) che tende a 0 delle due sommatorie, i limite per la sommatoria grande e il limite della sommatoria piccola coincidono, e sono entrambe uguali al valore dell'integrale definito della funzione integrata sull'intervallo che è stato suddiviso in trapezoidi.
gtr84 è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 15:20   #3
Morpheus_/_Neo
Member
 
Iscritto dal: Aug 2002
Messaggi: 154
integrale DEFINITO
beh, per farla semplice, il problema che si vuol risolvere e' questo.

data una funzione y = f(x) definita e continua in un intervallo (a,b) si vuole calcolare l'area della parte di piano delimitata dall'asse x, dal grafico della funzione f e dalle rette parallele all'asse y di equazione rispettivamente x=a, x=b.

in particolare si vuole che la definizione di area a cui si giungera' comprenda come caso particolare l'area dei rettangoli in modo che la def di area a cui giungeremo, applicata al caso di un rettangolo, dia proprio la formula nota: A=base*altezza.

ora, il procedimento e' questo: considero la figura delimitata dal grafico di f(x) (figura definita alla riga 3 di questo testo). considero tutti i plurirettangoli contenenti tale figura e tutti i plurirettangoli contenuti in tale figura.

x ciascuno di questi plurirettangoli calcolo l'area come somma dei rettangoli componenti.

ora, prendo l'insieme dei plurirett. contenuti e considero il massimo dei valori delle aree calcolate.

prendo l'insieme dei plurirett. contenenti e considero il minimo dei valori delle aree calcolate

se minimo = massimo, allora dico che y = f(x), a<= x <= b e' integrabile e la sua area vale A=minimo=massimo. per indicare tale area e tale procedimento di calcolo uso il simbolo di integrale.

ora, un modo per avere plurirett. contenuti e' prendere l'intervallo (a,b) e dividerlo in N parti uguali e considerare i punti a,b e quelli dati dalle "tacche" di divisione. per ognuno di questi punti considera la corrispondente immagine sul grafico di f(x) e costriusci dei rettangoli che abbiano per base una delle N parti in cui hai diviso (a,b) e per altezza l'immagine dei punti di cui sopra e fatti in modo che il rettangolo sia contenuto nella figura.
in modo analogo si costriuscono i plurirettangoli contenenti.
ora, si dimostra che se f e' integrabile, l'area calcolata usando questi plurirett, al variare di N e' la stessa calcolata con la definizione data prima. Inoltre se fai tendere N all'infinito ottieni con naturalezza la definizione di integrale come limite della sommatoria delle aree dei rettangoli che compongono i plurirett.

spero di essermi spiegato a sufficienza, senza disegnare non e' semplice!
fammi sapere ciao
M_/_N
Morpheus_/_Neo è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 18:40   #4
StepsOTM
Senior Member
 
L'Avatar di StepsOTM
 
Iscritto dal: Jan 2002
Città: Somewhere... Over the Rainbow... Down there near Novara
Messaggi: 358
Non avete dato la definizione + generale di integrale, proprio la primissima che si studia!

L'integrazione è l'operazione inversa della derivazione, o meglio, calcolare un integrale indefinito significa trovare una funzione, detta primitiva, che se derivata dà la funzione integranda, cioè quella di partenza.

Per esempio: Sx^2dx = (x^3)/3 + c

c è una costante additiva: poiché la derivata di una costante è zero, bisogna aggiungerla alla primitiva per considerare tutti i casi possibili. Infatti:

D(x^3)/3 + c = x^2

E da qui in poi si tratta di regole e calcoli (integrali immediati, ecc.).

L'integrale definito serve invece, come spiegato da morpheus, a calcolare aree.

Byeee
__________________
"I nostri PC invecchiano come il vino. Se volete dire che diventano aceto, è così. Se volete dire che migliorano con l'età, non è così..."
StepsOTM è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 18:55   #5
dooka
Senior Member
 
L'Avatar di dooka
 
Iscritto dal: Dec 2001
Città: Castelnuovo R. (MO) Nato: 05/02/1984
Messaggi: 1683
esaustivi tutti e 3 grazie

a noi 2 analisi
__________________
iMac 20" C2D .. MacBook Air /w SSD .. iPhone 4
dooka è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 19:23   #6
Nabrez
Bannato
 
L'Avatar di Nabrez
 
Iscritto dal: Mar 2004
Città: Trastecco di Moli Mare
Messaggi: 142
Quote:
Originariamente inviato da StepsOTM
Non avete dato la definizione + generale di integrale, proprio la primissima che si studia!

L'integrazione è l'operazione inversa della derivazione, o meglio, calcolare un integrale indefinito significa trovare una funzione, detta primitiva, che se derivata dà la funzione integranda, cioè quella di partenza.

Per esempio: Sx^2dx = (x^3)/3 + c

c è una costante additiva: poiché la derivata di una costante è zero, bisogna aggiungerla alla primitiva per considerare tutti i casi possibili. Infatti:

D(x^3)/3 + c = x^2

E da qui in poi si tratta di regole e calcoli (integrali immediati, ecc.).

L'integrale definito serve invece, come spiegato da morpheus, a calcolare aree.

Byeee
E' solo un caso che l'integrale sia l'inverso della derivata pero!
Nabrez è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 21:41   #7
spinbird
Senior Member
 
L'Avatar di spinbird
 
Iscritto dal: May 2001
Messaggi: 634
Quote:
Originariamente inviato da Nabrez
E' solo un caso che l'integrale sia l'inverso della derivata pero!
un caso?

la matematica non è un caso...è tutta definita molto rigorosamente e formalmente....non esce una cosa per "caso" in matematica...

il teorema fondamentale del calcolo integrale spiega appunto perchè si utilizzano le primitive per calcolare l'area sottesa a una curva, è stato dimostrato, e non per caso...
__________________
Però, va forte quest'auto!

Ultima modifica di spinbird : 26-05-2004 alle 21:44.
spinbird è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 21:47   #8
spinbird
Senior Member
 
L'Avatar di spinbird
 
Iscritto dal: May 2001
Messaggi: 634
Quote:
Originariamente inviato da StepsOTM
Non avete dato la definizione + generale di integrale, proprio la primissima che si studia!

L'integrazione è l'operazione inversa della derivazione, o meglio, calcolare un integrale indefinito significa trovare una funzione, detta primitiva, che se derivata dà la funzione integranda, cioè quella di partenza.

l'integrale non è definito come l'inverso della derivazione
l'intrgrale è l'area sottesa a una curva (parlando sempre di curve nel piano); questo è quello che si intende per integrale

si è dimostrato poi dopo che coincide con le primitive e bla bla bla...ma l'integrale NON E' la primitiva, solo l'area sottesa alla curva...è importante come definzione, almeno, molti prof di analisi li ho sentiti tenerci particolarmente a questa cosa
__________________
Però, va forte quest'auto!

Ultima modifica di spinbird : 26-05-2004 alle 21:49.
spinbird è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 22:11   #9
Fede
Senior Member
 
L'Avatar di Fede
 
Iscritto dal: Feb 2000
Città: Roma (S.E.) Trattative_concluse: 300+
Messaggi: 15705
Quote:
Originariamente inviato da Nabrez
E' solo un caso che l'integrale sia l'inverso della derivata pero!
__________________
I ricordi sono sempre tristi: quelli brutti perchè sono amari, quelli belli perché sono solo ricordi
Dal mio corpo in putrefazione cresceranno dei fiori, e io sarò dentro di loro. Questa è l'eternità. (E. Munch)
Fede è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 22:14   #10
luckye
Senior Member
 
L'Avatar di luckye
 
Iscritto dal: May 2001
Città: Monza
Messaggi: 4054
...........e^x che sta lì nell'angolino tutto solo. Poverino non si integra mai......
__________________
Dostoevskij "La bellezza salverà il mondo"
luckye è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 22:22   #11
spinbird
Senior Member
 
L'Avatar di spinbird
 
Iscritto dal: May 2001
Messaggi: 634
Quote:
Originariamente inviato da luckye
...........e^x che sta lì nell'angolino tutto solo. Poverino non si integra mai......
battutona da ingegnere:eheh:
__________________
Però, va forte quest'auto!
spinbird è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 22:26   #12
luigiaratamigi
Member
 
L'Avatar di luigiaratamigi
 
Iscritto dal: Apr 2003
Città: Linguate sul Prepuzio (MI)
Messaggi: 121
La conoscevo diversamente:

Ad una festa di funzioni, c'è e^x che st tutto solo.
Gli si avvicina x^2 e gli dice:
"Perchè non ti integri con noi?"
Ed e^x risponde:
"No grazie, tanto è lo stesso...."
luigiaratamigi è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 22:28   #13
spinbird
Senior Member
 
L'Avatar di spinbird
 
Iscritto dal: May 2001
Messaggi: 634
Quote:
Originariamente inviato da luigiaratamigi

Ad una festa di funzioni, c'è e^x che st tutto solo.
Gli si avvicina x^2 e gli dice:
"Perchè non ti integri con noi?"
Ed e^x risponde:
"No grazie, tanto è lo stesso...."
e qui arriviamo al dottorato
__________________
Però, va forte quest'auto!
spinbird è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 22:33   #14
riaw
Senior Member
 
L'Avatar di riaw
 
Iscritto dal: Sep 2000
Città: lodi-crema-milano.
Messaggi: 12327
Quote:
Originariamente inviato da spinbird
l'integrale non è definito come l'inverso della derivazione
l'intrgrale è l'area sottesa a una curva (parlando sempre di curve nel piano); questo è quello che si intende per integrale

si è dimostrato poi dopo che coincide con le primitive e bla bla bla...ma l'integrale NON E' la primitiva, solo l'area sottesa alla curva...è importante come definzione, almeno, molti prof di analisi li ho sentiti tenerci particolarmente a questa cosa
già!

e anche alla relativa dimostrazione, porca tr..a
__________________
La teoria è quando si sa tutto e niente funziona. La pratica è quando tutto funziona e nessuno sa il perché. Noi abbiamo messo insieme la teoria e la pratica: non c'è niente che funzioni... e nessuno sa il perché!
riaw è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 22:36   #15
spinbird
Senior Member
 
L'Avatar di spinbird
 
Iscritto dal: May 2001
Messaggi: 634
Quote:
Originariamente inviato da riaw
già!

e anche alla relativa dimostrazione, porca tr..a
se non studi sono solo cazzi tua
__________________
Però, va forte quest'auto!
spinbird è offline   Rispondi citando il messaggio o parte di esso
Old 26-05-2004, 22:38   #16
riaw
Senior Member
 
L'Avatar di riaw
 
Iscritto dal: Sep 2000
Città: lodi-crema-milano.
Messaggi: 12327
Quote:
Originariamente inviato da spinbird
se non studi sono solo cazzi tua

certe cose non serve studiarle
__________________
La teoria è quando si sa tutto e niente funziona. La pratica è quando tutto funziona e nessuno sa il perché. Noi abbiamo messo insieme la teoria e la pratica: non c'è niente che funzioni... e nessuno sa il perché!
riaw è offline   Rispondi citando il messaggio o parte di esso
Old 27-05-2004, 17:30   #17
StepsOTM
Senior Member
 
L'Avatar di StepsOTM
 
Iscritto dal: Jan 2002
Città: Somewhere... Over the Rainbow... Down there near Novara
Messaggi: 358
Quote:
Originariamente inviato da spinbird
l'integrale non è definito come l'inverso della derivazione
l'intrgrale è l'area sottesa a una curva (parlando sempre di curve nel piano); questo è quello che si intende per integrale

si è dimostrato poi dopo che coincide con le primitive e bla bla bla...ma l'integrale NON E' la primitiva, solo l'area sottesa alla curva...è importante come definzione, almeno, molti prof di analisi li ho sentiti tenerci particolarmente a questa cosa

Sai com'è. io non studio analisi.......................


Sono un semplice liceale che ha voluto dire la sua

Ho studiato per ora solo gli integrali indefiniti (pure sui miei libri di testo sono spiegati prima di quelli definiti), quindi pensavo di non dire amenità con la mia umile spiegazione, che comunque è giusta e mancava nelle prime due.

Sicuramente il calcolo integrale è molto più usato per il calcolo delle aree, ma serve pure a trovare le funzioni primitive, e ho voluto ricordarlo.

D'altronde quando la mia prof ha iniziato la lezione, la prima cosa che ha detto è stata proprio che il calcolo integrale è l'operazione inversa della derivazione, e così è spiegato pure sui miei libri da liceo scientifico.

Io per ora ho una conoscenza molto vaga di quelli definiti, ma da quel poco che so e che ho potuto applicare, per calcolare le aree sottese dalle curve fino all'asse delle ascisse serve comunque trovare la funzione primitiva, giusto?

Esempio:

[lo scrivo a parole non potendo usare i simboli]

integrale definito da 0 a pigreco di senx

prima si calcola la primitiva di senx, cioè -cosx (essendo Dcosx = -senx), poi si fa (-cospigreco) - (-cos0) = (-(-1)) - (-1) = 2

Quindi l'area compresa fra la funzione y=senx nell'intervallo [0;pigreco] vale 2. Ma prima di calcolarla ho dovuto trovare la sua primitiva, e per farlo bisogna aver studiato gli integrali indefiniti.



La tua osservazione poi sarà giusta se bisogna esporre questa teoria ad un prof universitario di un politecnico (o simili). Uso il condizionale perché ammetto di non saperlo.

Byeee!
__________________
"I nostri PC invecchiano come il vino. Se volete dire che diventano aceto, è così. Se volete dire che migliorano con l'età, non è così..."
StepsOTM è offline   Rispondi citando il messaggio o parte di esso
Old 29-05-2004, 00:46   #18
Morpheus_/_Neo
Member
 
Iscritto dal: Aug 2002
Messaggi: 154
beh, in effetti l'integrale è ANCHE l'inverso della derivazione! non è ne una cavolata ne un caso.

sentite, col termine integrale si intendono piu cose, che poi si dimostrano essere legate tra loro.

in particolare l'integrale definito serve per l'area mentre quello indefinito è la famiglia delle primitive e quindi è a tutti gli effetti l'inverso della derivazione.

poi si dimostra che l'integrale definito si calcola usando quello indefinito.
Morpheus_/_Neo è offline   Rispondi citando il messaggio o parte di esso
Old 25-08-2004, 00:18   #19
tidal kraken
Senior Member
 
L'Avatar di tidal kraken
 
Iscritto dal: Aug 2003
Città: Roma
Messaggi: 1071
Quote:
Originariamente inviato da Nabrez
E' solo un caso che l'integrale sia l'inverso della derivata pero!
concordo
si tratta di un abuso di linguaggio definire l'operazione di integrazione come inversa a quella di derivazione
sarebbe invece corretto parlare di complementarietà (simmetria) di operatori, l'invertibilità lasciatela alle funzioni biunivoche... e pensare che la confusione l'hanno creata dei professori e divulgata sui libri di testo!
__________________
Venduto a: AndreZ87
Acquistato da: ...
tidal kraken è offline   Rispondi citando il messaggio o parte di esso
Old 25-08-2004, 02:33   #20
Dias
Senior Member
 
L'Avatar di Dias
 
Iscritto dal: Mar 2004
Città: Unknown
Messaggi: 4553
Integrale è l'operatore inverso della derivata.
__________________
Only dead fish swim with the stream.
Dias è offline   Rispondi citando il messaggio o parte di esso
 Rispondi


Motorola razr 60 Ultra: il migliore! Peccato per l’AI un po’ ''zoppa''. Recensione Motorola razr 60 Ultra: il migliore! Peccato per...
AWS Summit Milano 2025: accelerare sull'IA per liberare il potenziale delle imprese italiane AWS Summit Milano 2025: accelerare sull'IA per l...
Recensione HONOR Pad 10: a questo prezzo fa tremare la concorrenza Recensione HONOR Pad 10: a questo prezzo fa trem...
GIGABYTE RTX 5060 Ti EAGLE OC ICE alla prova: compatta ed essenziale GIGABYTE RTX 5060 Ti EAGLE OC ICE alla prova: co...
AMD Ryzen Threadripper 9000 e Radeon AI Pro R9700, per le workstation AI AMD Ryzen Threadripper 9000 e Radeon AI Pro R970...
30 anni di vita cancellati in un clic: l...
Musica, rivoluzione IA: ecco come le pia...
GeForce RTX 4090 con 48 GB di memoria &e...
Xiaomi Redmi Note 14 (8+256GB): il best ...
Logitech MX Master 4: trapelano le prime...
Trasferimenti lampo a 68€: SSD portatile...
Stampare il vetro in 3D a 'bassa tempera...
Budget di circa 300€: Motorola Edge 50 1...
Haier torna in grande stile: tutte le te...
Honor Magic V5: il pieghevole impossibil...
Non solo public cloud: il ruolo chiave d...
NVIDIA punta al nucleare con Bill Gates,...
Ubuntu disabiliterà mitigazioni d...
Da 1.399€ a 1.099€: imperdibile Asus Zen...
Un coupon da 20€ fa scendere a soli 23,9...
Chromium
GPU-Z
OCCT
LibreOffice Portable
Opera One Portable
Opera One 106
CCleaner Portable
CCleaner Standard
Cpu-Z
Driver NVIDIA GeForce 546.65 WHQL
SmartFTP
Trillian
Google Chrome Portable
Google Chrome 120
VirtualBox
Tutti gli articoli Tutte le news Tutti i download

Strumenti

Regole
Non Puoi aprire nuove discussioni
Non Puoi rispondere ai messaggi
Non Puoi allegare file
Non Puoi modificare i tuoi messaggi

Il codice vB è On
Le Faccine sono On
Il codice [IMG] è On
Il codice HTML è Off
Vai al Forum


Tutti gli orari sono GMT +1. Ora sono le: 10:32.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Served by www1v