PDA

View Full Version : Calcolo 2: Piano Tangente al Grafico f(x,y)


luxorl
26-06-2004, 12:02
Raga
la formula per trovare il piano tangente al grafico di funzioni a due variabili non è questa?

z = f(x0,y0) + fx(x0,y0) * (x-x0) + fy(x0,y0) * (y-y0)

dove:
f(x0,y0) = la funzione sostituendo i punti dati.
fx(x0,y0) = la derivata della funzione lungo x, e poi sostituendo i punti dati
fy(x0,y0) = derivata della funzione lungo y, e poi sostituendo i punti dati.

facendo un esercizio non riesco a capire proprio perchè nn mi da.. (se è un errore banale, scusatemi a priori)

Esercizio:

F(x,y)=x^2 +3y punto(0,3)

allora:

derivata lungo x= 2x ----sostituendo punto---> = 0
derivata lungo y= 3
funzione nei punti = 9

piano tangente:

z= 9 (x - 0) + 3 (y - 3)

cioè

z= 9x+3y-9

non c'è questo risultatoooooooooooooooo
DOVE SBAGLIO?

:cry: :cry:

luxorl
26-06-2004, 12:26
Dai, please, chi mi aiuta?

guldo76
26-06-2004, 12:30
z = f(x0,y0) + fx(x0,y0) * (x-x0) + fy(x0,y0) * (y-y0)
f(x,y)=x^2 +3y punto(0,3)

Ammesso che la formula sia giusta (non ne ho idea), il risultato e`:
z = 9 + 0 ( x - 0 ) + 3 ( y - 3 ) = 3y

luxorl
26-06-2004, 12:31
Che abbaglio :doh:

ok la formula è giusta!