Quote:
Originariamente inviato da Mezzetti0903
...testo dell'esercizio:
Dimostrare che infinito elevato infinito = infinito
voi come lo dimostrereste??
Avevo pensato semplicemente
1)
a (alla n) = a * a (n volte)
Per cui infinito * infinito (infinite volte) = infinito
2)
oppure
infinito = e ^ ln infinito
infinito ^ infinito = e ^ (infinito * (ln infinito)) = E all' infinito = infinito
MA MI PAIONO
INCOMPLETE E TROPPO FACILE
.... voi come lo dimostrereste?
|
teoricamente è dimostrabile che l'insieme universo non esiste (l'insieme infinito che contine tutti gli insieme) e cmq infinito al quadrato non è uguale ad infinito...
infinito =una retta
intinito^2=un piano
infinito^3=uno spazio tridimensionale
è una cosa banale...non esiste il ragionamento che fai te...viola tutti i principi della matematica hehe