Quote:
Originariamente inviato da Lucrezio
L'insieme delle soluzioni di un'equazione differenziale lineare di secondo ordine è uno spazio vettoriale di dimensione 2.
che tu prenda exp(iwt), exp(-iwt) come base va benissimo, ma se tu decidi che vuoi applicare lo studio che stai facendo ad un sistema fisico "reale", puoi decidere arbitrariamente, senza problemi, di prendere solo la parte reale delle tue soluzioni. Devi però trovare due funzioni che siano linearmente indipendenti e al contempo soluzione entrambe dell'equazione differenziale: il seno e il coseno godono di queste proprietà (sono ortogonali e risolvono l'equazione se il termine dissipativo è nullo; altrimenti ti viene un fattore esponenziale che però ha argomento in ogni caso reale, quindi interessa poco, ai fini di quello che vogliamo vedere!) quindi, restringendosi ad R, siamo a posto
P.S.: in poche parole: vedila come un problema di geometria, non di analisi!
Un'altra risposta possibile è che seno e coseno sono combinazioni lineari (e quindi, essendo lo spazio delle soluzioni uno spazio vettoriale, a loro volta soluzioni) di e^{iwx} ed e^{-iwx}... alla fine il succo è lo stesso 
|
il fatto è che prendo non sono la parte reale, infatti il seno è la parte immaginaria della soluzione.
cmq questo ragionamento l'ho fatto anche io e intuitivamente è corretto, solo che al prof non sta bene detto in questi termini.
mi sembra,da come ho capito, che si effetua un cambiamento di base,con una procedura rigorosa