View Single Post
Old 08-09-2006, 22:42   #289
Lucrezio
Senior Member
 
L'Avatar di Lucrezio
 
Iscritto dal: Dec 2003
Città: Trento, Pisa... ultimamente il mio studio...
Messaggi: 4389
Quote:
Originariamente inviato da pietro84
piccolo dubbio.

l'integrale generale di una equazione differenziale omogenea a coefficienti costanti del secondo ordine è del tipo :

y(t)=c1*e(z1t)+c2*e(z2t) (se z1 è diverso da z2)
nel caso in cui il polinomio caratteristico abbia radici complesse e coniugate, z1 e z2 sono numeri complessi, per semplicità suppongo che la parte reale di z1 e z2 sia nulla.

utilizzando le formule di eulero si ottiene:

y(t)= (c1+c2) cos(z1t) + j(c1-c2) sen(z2t)= Acos(z1t)+jBsen(z2t)
con z1=z2

nei libri di analisi però la soluzione riportata è di questo tipo:

y(t)= A cos(z1t) + Bsen(z1t)

quando si cercano soluzioni puramente reali.

però io mi chiedo: in base a quale considerazione rigorosa l'unità immaginaria sparisce? intuitivamente il ragionamento fila, ma non riesco a giustificare con rigore questo passaggio
L'insieme delle soluzioni di un'equazione differenziale lineare di secondo ordine è uno spazio vettoriale di dimensione 2.
che tu prenda exp(iwt), exp(-iwt) come base va benissimo, ma se tu decidi che vuoi applicare lo studio che stai facendo ad un sistema fisico "reale", puoi decidere arbitrariamente, senza problemi, di prendere solo la parte reale delle tue soluzioni. Devi però trovare due funzioni che siano linearmente indipendenti e al contempo soluzione entrambe dell'equazione differenziale: il seno e il coseno godono di queste proprietà (sono ortogonali e risolvono l'equazione se il termine dissipativo è nullo; altrimenti ti viene un fattore esponenziale che però ha argomento in ogni caso reale, quindi interessa poco, ai fini di quello che vogliamo vedere!) quindi, restringendosi ad R, siamo a posto

P.S.: in poche parole: vedila come un problema di geometria, non di analisi!
Un'altra risposta possibile è che seno e coseno sono combinazioni lineari (e quindi, essendo lo spazio delle soluzioni uno spazio vettoriale, a loro volta soluzioni) di e^{iwx} ed e^{-iwx}... alla fine il succo è lo stesso
__________________
"Expedit esse deos, et, ut expedit, esse putemus" (Ovidio)
Il mio "TESSORO": SuperMicro 733TQ, SuperMicro X8DAI I5520, 2x Xeon Quad E5620 Westmere, 12x Kingston 4GB DDR3 1333MHz, 4x WD 1Tb 32MB 7.2krpm

Ultima modifica di Lucrezio : 08-09-2006 alle 22:46.
Lucrezio è offline   Rispondi citando il messaggio o parte di esso