PDA

View Full Version : Lo strano caso delle eruzioni solari e del decadimento elementi radioattivi


raxas
09-06-2011, 07:03
Notizia dell' eruzione solare (7 giugno) e (in basso) alterazione del decadimento radioattivo osservata durante

http://www.lineameteo.it/eruzione-solare-domani-gps-e-cellulari-a-rischio-black-out-vf1-vt9288-vp218147.html

Eruzione solare: domani GPS e cellulari in black-out
11:44 - Giugno 8, 2011

di Pino Bruno, Roberto Caccia

Una grossa eruzione solare avvenuta nella mattinata di ieri potrebbe provocare disturbi nelle le telecomunicazioni e i sistemi GPS durante la giornata di domani. Le previsioni arrivano direttamente dalla NASA e gli effetti dovrebbero durare circa 24 ore.

Domani, 9 giugno, ci potrebbero essere alcuni problemi con le telecomunicazioni, a causa di un'eruzione solare molto potente avvenuta nella mattinata di ieri. Le previsioni "spaziali" arrivano direttamente dalla NASA e dallo Space Weather Prediction Center del NOAA (National Oceanic and Atmospheric Administration.
http://www.lineameteo.it/posted_img_thumbnail.php?cache=false&pic_id=http%3A%2F%2Fwww.tomshw.it%2Ffiles%2F2011%2F06%2Fimmagini%2F31876%2Fsolareruption_t.jpg

Un'immagine dell'eruzione solare di ieri mattina
Come potete vedere nelle spettacolari immagini elaborate dal Solar Dynamics Observatory, l'emissione di massa coronale (una sorta di "esplosione" che avviene sulla superficie del Sole) ha interessato un'ampia zona della nostra stella preferita.
Secondo gli esperti, la tempesta solare potrebbe influenzare negativamente le comunicazioni satellitari e le reti elettriche. Gli effetti dovrebbero durare circa ventiquattr'ore.

HUGE explosion on the Sun on June 7, 2011 (http://www.youtube.com/watch?v=Hyi4hjG6kDM&feature=player_embedded)

Cosa potrebbe accadere? La tempesta geomagnetica potrebbe avere intensità G1 o G2 (la scala va dal valore più basso G1 a quello più alto G5) e dunque ci potrebbero essere disturbi nelle telecomunicazioni a livello globale, sistema GPS compreso.
Secondo un portavoce dell'agenzia spaziale degli Stati Uniti, alcuni aerei di linea potrebbero essere costretti a cambiare rotta sulle regioni polari. Alcuni scienziati hanno detto che si è trattato della più impressionante eruzione osservata finora dal Solar Dymanics Observatory della NASA.


Questa è la notizia di questi giorni, ma ci sono altre implicazioni, inspiegabili:

http://news.stanford.edu/news/2010/august/sun-082310.html
Il decadimento radioattivo di alcuni elementi osservati in laboratori sulla Terra sembra essere influenzato dalle attività all'interno del Sole, 93milioni di miglia lontano

BY DAN STOBER

It's a mystery that presented itself unexpectedly:
The radioactive decay of some elements sitting quietly in laboratories on Earth seemed to be influenced by activities inside the sun, 93 million miles away.

Is this possible?

Researchers from Stanford and Purdue University believe it is. But their explanation of how it happens opens the door to yet another mystery.

There is even an outside chance that this unexpected effect is brought about by a previously unknown particle emitted by the sun. "That would be truly remarkable," said Peter Sturrock, Stanford professor emeritus of applied physics and an expert on the inner workings of the sun.

The story begins, in a sense, in classrooms around the world, where students are taught that the rate of decay of a specific radioactive material is a constant. This concept is relied upon, for example, when anthropologists use carbon-14 to date ancient artifacts and when doctors determine the proper dose of radioactivity to treat a cancer patient.

Random numbers

But that assumption was challenged in an unexpected way by a group of researchers from Purdue University who at the time were more interested in random numbers than nuclear decay. (Scientists use long strings of random numbers for a variety of calculations, but they are difficult to produce, since the process used to produce the numbers has an influence on the outcome.)

Ephraim Fischbach, a physics professor at Purdue, was looking into the rate of radioactive decay of several isotopes as a possible source of random numbers generated without any human input. (A lump of radioactive cesium-137, for example, may decay at a steady rate overall, but individual atoms within the lump will decay in an unpredictable, random pattern. Thus the timing of the random ticks of a Geiger counter placed near the cesium might be used to generate random numbers.)

As the researchers pored through published data on specific isotopes, they found disagreement in the measured decay rates – odd for supposed physical constants.

Checking data collected at Brookhaven National Laboratory on Long Island and the Federal Physical and Technical Institute in Germany, they came across something even more surprising: long-term observation of the decay rate of silicon-32 and radium-226 seemed to show a small seasonal variation. The decay rate was ever so slightly faster in winter than in summer.

Was this fluctuation real, or was it merely a glitch in the equipment used to measure the decay, induced by the change of seasons, with the accompanying changes in temperature and humidity?

"Everyone thought it must be due to experimental mistakes, because we're all brought up to believe that decay rates are constant," Sturrock said.

The sun speaks

On Dec 13, 2006, the sun itself provided a crucial clue, when a solar flare sent a stream of particles and radiation toward Earth. Purdue nuclear engineer Jere Jenkins, while measuring the decay rate of manganese-54, a short-lived isotope used in medical diagnostics, noticed that the rate dropped slightly during the flare, a decrease that started about a day and a half before the flare.

If this apparent relationship between flares and decay rates proves true, it could lead to a method of predicting solar flares prior to their occurrence, which could help prevent damage to satellites and electric grids, as well as save the lives of astronauts in space.

The decay-rate aberrations that Jenkins noticed occurred during the middle of the night in Indiana – meaning that something produced by the sun had traveled all the way through the Earth to reach Jenkins' detectors. What could the flare send forth that could have such an effect?

Jenkins and Fischbach guessed that the culprits in this bit of decay-rate mischief were probably solar neutrinos, the almost weightless particles famous for flying at almost the speed of light through the physical world – humans, rocks, oceans or planets – with virtually no interaction with anything.

Then, in a series of papers published in Astroparticle Physics, Nuclear Instruments and Methods in Physics Research and Space Science Reviews, Jenkins, Fischbach and their colleagues showed that the observed variations in decay rates were highly unlikely to have come from environmental influences on the detection systems.

Reason for suspicion

Their findings strengthened the argument that the strange swings in decay rates were caused by neutrinos from the sun. The swings seemed to be in synch with the Earth's elliptical orbit, with the decay rates oscillating as the Earth came closer to the sun (where it would be exposed to more neutrinos) and then moving away.

So there was good reason to suspect the sun, but could it be proved?

Enter Peter Sturrock, Stanford professor emeritus of applied physics and an expert on the inner workings of the sun. While on a visit to the National Solar Observatory in Arizona, Sturrock was handed copies of the scientific journal articles written by the Purdue researchers.

Sturrock knew from long experience that the intensity of the barrage of neutrinos the sun continuously sends racing toward Earth varies on a regular basis as the sun itself revolves and shows a different face, like a slower version of the revolving light on a police car. His advice to Purdue: Look for evidence that the changes in radioactive decay on Earth vary with the rotation of the sun. "That's what I suggested. And that's what we have done."

A surprise

Going back to take another look at the decay data from the Brookhaven lab, the researchers found a recurring pattern of 33 days. It was a bit of a surprise, given that most solar observations show a pattern of about 28 days – the rotation rate of the surface of the sun.

The explanation? The core of the sun – where nuclear reactions produce neutrinos – apparently spins more slowly than the surface we see. "It may seem counter-intuitive, but it looks as if the core rotates more slowly than the rest of the sun," Sturrock said.

All of the evidence points toward a conclusion that the sun is "communicating" with radioactive isotopes on Earth, said Fischbach.

But there's one rather large question left unanswered. No one knows how neutrinos could interact with radioactive materials to change their rate of decay.

"It doesn't make sense according to conventional ideas," Fischbach said. Jenkins whimsically added, "What we're suggesting is that something that doesn't really interact with anything is changing something that can't be changed."

"It's an effect that no one yet understands," agreed Sturrock. "Theorists are starting to say, 'What's going on?' But that's what the evidence points to. It's a challenge for the physicists and a challenge for the solar people too."

If the mystery particle is not a neutrino, "It would have to be something we don't know about, an unknown particle that is also emitted by the sun and has this effect, and that would be even more remarkable," Sturrock said.

Chantal Jolagh, a science-writing intern at the Stanford News Service, contributed to this story.

jumpjack
09-06-2011, 12:34
The radioactive decay of some elements sitting quietly in laboratories on Earth seemed to be influenced by activities inside the sun, 93 million miles away.

Is this possible?

L'avevo chiesto a Christina Aemiliana in un altro thread tempo fa, ma mi pare non mi abbia mai risposto...


If this apparent relationship between flares and decay rates proves true, it could lead to a method of predicting solar flares prior to their occurrence, which could help prevent damage to satellites and electric grids, as well as save the lives of astronauts in space.

Sarebbe un'applicazione interessante!

Raghnar-The coWolf-
09-06-2011, 13:26
se fossero i neutrini sarebbe "semplice" da verificare, basta andare vicino ad un reattore nucleare...

jumpjack
09-06-2011, 13:37
se fossero i neutrini sarebbe "semplice" da verificare, basta andare vicino ad un reattore nucleare...

quelli non sono neutrOni? :confused:

Raghnar-The coWolf-
09-06-2011, 19:52
quelli non sono neutrOni? :confused:

both of them.

La scoperta del neutrino è avvenuta vicino a un reattore.