View Full Version : [Space] NASA - Crew Exploration Vehicle
Discussione ufficiale
NASA Constellation Program
::: CANCELLATO :::
(vedi sotto)
http://upload.wikimedia.org/wikipedia/en/b/b7/New_NASA_Constellation_Logo.PNG
Il programma Constellation è:
Ares Launch Vehicle - Orion Spacecraft - Altair (Lunar Surface Access Module)
http://www.redicecreations.com/ul_img/2481nasalogos.jpg
Sito ufficiale del programma: http://www.nasa.gov/mission_pages/constellation/main/index.html
Stato: CANCELLATO
La proposta di budget NASA per il 2011-2015 termina il programma Constellation, la decisione passa ora al Congresso che potrà approvarla o modificarla.
Documento e maggiori informazioni sul sito NASA.gov:
http://www.nasa.gov/news/budget/index.html
PDF: http://www.nasa.gov/pdf/420990main_FY_201_%20Budget_Overview_1_Feb_2010.pdf
I punti cardine sono:
- Termine del programma Constellation (almeno così come lo si intende ora)
- Aumento del budget a $6 miliardi nel periodo 2011-2015
- Sviluppo di un nuovo sistema HLV (Heavy-Lift Launch Veichle), ri-utilizzo di propulisioni esistenti (SSME-2?) e progettazione di nuove
- Nuovi accordi commerciali con i privati per LEO e Luna/Marte
- Estensione del supporto al programma ISS fino al 2020 e oltre
___________________________________________
Da SpaceFlightNow.com (http://spaceflightnow.com/news/n0509/19exploration/):
NASA formally unveils lunar exploration architecture
BY WILLIAM HARWOOD
STORY WRITTEN FOR CBS NEWS "SPACE PLACE" & USED WITH PERMISSION
Posted: September 19, 2005
NASA today unveiled an ambitious blueprint for returning American astronauts to the moon by 2018 using new rockets based on shuttle propulsion technology and a new reusable crew vehicle Administrator Mike Griffin described as "Apollo on steroids."
http://spaceflightnow.com/news/n0509/19exploration/crewlaunchvehicle.jpg
NASA's new astronaut capsule will be launched atop a single space shuttle solid rocket booster. Credit: NASA/John Frassanito and Associates
The new architecture is the result of a 2004 Bush administration directive to complete the international space station and retire the shuttle by 2010; to develop a new manned spacecraft to replace the shuttle that could deliver crews to the station and, eventually, to the moon for extended missions. The long-range goal is eventual manned flights to Mars.
"We believe this architecture, which is the product of an intensive summer of work by hundreds of folks here at the agency, achieves those goals in the most cost-effective, efficient manner that we could do it," Griffin told reporters. "It's within the available budget, without asking for new money, and does so in as timely a manner as we could discern."
He described the new initiative as "the best mission statement NASA has had in 40 years."
But it will not be cheap. Griffin said the total cost of the program, from now through the first moon landing around 2018, will be roughly $104 billion, or about 55 percent of the cost of the Apollo moon program in inflation-adjusted dollars.
While Congress has been generally favorable to the idea of a new moon-Mars initiative, many have questioned whether lawmakers will fully fund the program given the demands of Hurricane Katrina and the cost of the ongoing war in Iraq. But Griffin said NASA is here to stay and that space exploration represents a long-term investment.
"We're talking about returning to the moon in 2018," he said. "There will be a lot more hurricanes and a lot more other natural disasters to befall the United States and the world in that time. I hope none worse than Katrina. I've been down there ... and it's just devastating. But the space program is a long-term investment in our future. We must deal with our short-term problems while not sacrificing our long-term investments in our future. When we have a hurricane, we don't cancel the Air Force; we don't cancel the Navy. And we're not going to cancel NASA."
He said NASA's Michoud external tank facility in New Orleans and the Stennis Space Center near Bay St. Louis, Miss., where shuttle main engines are test fired, will both play critical roles in the new exploration initiative, providing "thousands and thousands of real jobs, not WPA work, not reconstruction but strategically important work" to residents of the hurricane-ravaged Gulf Coast.
http://spaceflightnow.com/news/n0509/19exploration/compare.jpg
The new crew and cargo rockets are compared to the Saturn 5 and space shuttle in this illustration. Credit: NASA
The centerpiece of the new initiative is the so-called Crew Exploration Vehicle, or CEV, which will carry up to six astronauts to the international space station or some 25 metric tons of cargo when launched in an unmanned configuration. The capsule would be launched atop a single shuttle solid-fuel booster equipped with an upper stage powered by a shuttle main engine. Like the old Apollo command module, the new CEV would feature escape rockets to pull a crew away from a malfunctioning booster.
NASA hopes to launch the first CEV by 2012, minimizing the downtime after the end of the shuttle program in 2010. But the schedule could stretch out depending on how funding evolves.
"It is very Apollo like," Griffin said. "Think of it as Apollo on steroids. Currently, we're looking at a five-and-a-half meter base diameter compared with a 3.9 meter Apollo diameter. ... We're talking about a CEV capsule that weighs about 50 percent more than the Apollo command module, but can carry twice the number of people, can sustain itself for six months in lunar orbit, offers quite a lot more capability.
"We're talking about a design that is fundamentally reusable. It must have the capability in a survival mode to land on either land or water. We are currently baselining a land landing (at Edwards Air Force Base, Calif.), but ultimately that is up for grabs."
Heavy cargo, including the craft that will carry future CEV crews to and from the surface of the moon, will be launched on a new generation of powerful unmanned rockets utilizing two extended shuttle solid-fuel boosters, a hydrogen-oxygen first stage built around an extended shuttle external fuel tank and five space shuttle main engines and a new upper stage built around one or more main engines.
The solar-powered CEV would rendezvous with the lunar lander spacecraft in low-Earth orbit. Four astronauts then would fly to the moon and descend to the surface in the lander for a one-week stay, leaving the CEV alone in orbit.
http://spaceflightnow.com/news/n0509/19exploration/lunarlander.jpg
The first lunar landing under NASA's new exploration plan could occur in 2018. Credit: NASA/John Frassanito and Associates
After completing their initial four-to-seven-day mission, the astronauts would blast off, rendezvous with the CEV and return to a parachute landing in the western United States.
Griffin said the CEV offers major improvements over the Apollo design: Twice the number of crew to the lunar surface - four people instead of two - and "at least double the amount of time" on the surface.
"We're talking seven-day missions being available even on the first returns back to the moon," Griffin said. "So therefore, four times the amount of lunar surface crew hours. This architecture provides global lunar surface access. Apollo was limited to roughly equatorial regions. Scientists have interest in regions on the moon that expand well beyond equatorial regions and this system provides that, together with anytime return to Earth, which is crucial. It allows us, but does not require us, to establish a permanent human presence on the moon while preparing for Mars and beyond."
Two moon flights per year are currently envisioned, with the prospect of extended six-month stays a real possibility.
By utilizing existing shuttle propulsion and support infrastructure at the Kennedy Space Center, NASA hopes to save money compared to what a totally new design would cost to develop and launch. And early estimates show the CEV would be much safer than the shuttle fleet, with the odds of catastrophic failure on the order of 1-in-2,000 compared to 1-in 220.
http://spaceflightnow.com/news/n0509/19exploration/cargolauncher.jpg
NASA's new heavy-lifting cargo carrier will use space shuttle main engines, solid rocket boosters and external fuel tank. Credit: NASA/John Frassanito and Associates
The CEV "can carry fewer than six crew and can carry with them pressurized cargo, up to several thousand pounds depending on how many crew one wishes to have with them," Griffin said. "It can function completely autonomously, carrying up to about 7,000 pounds of pressurized cargo and of course, can then come back and be reused. The service module in concert with the crew launch vehicle can carry unpressurized cargo up to again, the payload of the vehicle is around 25 metric tons.
"This system, with each launch, places in orbit the same net useful payload as does the shuttle system, in fact a little more, some 25 metric tons in a station-compatible orbit. What it does not do is to combine crew and cargo for each launch. So if we need to launch cargo, we do that. If we need to launch crew, we do that. If we need to launch some reasonable mix we can do that.
"I think of it as being like your car. It has a trunk and it has a glove compartment and they're available. If you need really heavy cargo moved around, you hire a moving van. This system provides all of those."
President Bush first announced a sharp change in direction for NASA during a speech at agency headquarters Jan. 14, 2004. The plan owes at least part of its heritage to the Columbia Accident Investigation Board, which concluded NASA could not safely fly the space shuttle beyond 2010 without a major recertification review.
http://spaceflightnow.com/news/n0509/19moonmars/lunarvehicle.jpg
NASA's new crew exploration vehicle in lunar orbit. Credit: NASA/John Frassanito and Associates
The Bush plan called for NASA to begin launching unmanned probes to the moon within just four years to map resources and refine knowledge about the harsh lunar environment that will face astronauts making long-duration stays.
Space station research will be re-focused almost exclusively on life sciences as part of what amounts to a crash course on learning how to counteract the harmful physiological effects of weightlessness.
Knowledge gained from station research, development of the new Crew Exploration Vehicle and the infrastructure needed to support long duration moon missions, the president said, will pave the way for eventual flights to Mars and beyond.
"Today we set a new course for America's space program," Bush said. "We will give NASA a new focus and vision for future exploration. We will build new ships to carry man forward into the universe, to gain a new foothold on the moon, and to prepare for new journeys to worlds beyond our own."
The original plan called for Congress to boost NASA's budget by an additional $1 billion over the next five years - an average of $200 million per year - to help kick-start the new initiative. Another $11 billion was to come from reallocating money already in NASA's projected budgets by restructuring or eliminating programs and initiatives that aren't consistent with deep space exploration.
The president's plan would increase NASA's budget by 5 percent per year over the next three years and then at a modest 1 percent or less per year for the following two years. The bulk of the money to pay for the new initiative would come from funds freed up by the retirement of the shuttle and completion of the international space station.
Flight Plan (under review):
http://www.nasa.gov/images/content/125171main_flight_plan_graphic.jpg
The Launch Vehicles (Shuttle derived ET and SRB):
http://www.nasa.gov/images/content/123126main_rockets_full.jpg
jumpermax
21-09-2005, 00:44
insomma si ritorna ai sistemi pre shuttle... un cambio così radicale sa quasi di fallimento del progetto.
Luther Blissett
21-09-2005, 01:11
Con lo shuttle mi sembra un attimo complicato atterrare sulla luna. Solo un po'!
jumpermax
21-09-2005, 01:40
Con lo shuttle mi sembra un attimo complicato atterrare sulla luna. Solo un po'!
Lo shuttle infatti è concepito solo per arrivare in orbita attorno alla terra (e nemmeno in tutte). Solo che qua mi sembra che abbiano praticamente scartato 20 anni di missioni spaziali e siano ripartiti dal progetto Apollo... mi aspettavo che un veicolo della tipologia shuttle non fosse indicato, soprattutto per i costi, non pensavo che fossero ritornati in pratica alle capsule che rientrano in atmosfera col paracadute...
Phantom II
21-09-2005, 02:52
Al TG3 di un paio di giorni fa è stato detto che oltre ad un nuovo programma lunare, la Nasa avrebbe in cantiere anche la realizzazione di un sostituto dello Shuttle, il cui progetto ammonterebbe a 100 miliardi di dollari.
Ma non si era detto che l'agenzia americana quanto a budget, negli ultimi anni non navigasse propriamente nell'oro?
1. Non esiste alcun sostituto dello Shuttle, nel senso di un sistema simile costituito da un orbiter "delta winged". Il progetto STS era destinato solo alle attività in LEO (orbita bassa terrestre), sarà il CEV a sostituire le funzioni dello Shuttle per il trasporto degli astronauti alla ISS, così come il Kliper russo sostituisce la Soyuz.
2. Lo stesso amministratore Griffin ha definito il CEV un "Apollo-on-steroids", ed è concettualmente derivato dall'Apollo così come il Kliper dalla Soyuz o come la Shenzhou, e in grande misura riutilizza la componentistica del sistema STS (ET per l'Heavy Lift Launch Veichle con il modulo e i SRB, a 5 stadi invece che 4 come ora). Tuttavia è attualmente l'unica soluzione fattibile per un sistema che deve essere in grado di arrivare sulla Luna o, ancora più importante, su Marte, e rientrare sulla terra senza avere gli incovenienti derivati da un sistema con orbiter dotato di ali e quello di un side-mounted veichle come nel caso dell'attuale Shuttle, troppo esposto come abbiamo visto al rischio di essere colpito da detriti dell'ET.
3. Il Kliper è un sistema leggermente più avanzato in quanto usa un lifting-body con delle alette laterali in modo da avere direzionalità in fase di rientro, ma anche per questo è un progetto un pò più lungo (che cmq è partito prima, nel 2004).
jumpermax
21-09-2005, 10:16
1. Non esiste alcun sostituto dello Shuttle, nel senso di un sistema simile costituito da un orbiter "delta winged". Il progetto STS era destinato solo alle attività in LEO (orbita bassa terrestre), sarà il CEV a sostituire le funzioni dello Shuttle per il trasporto degli astronauti alla ISS, così come il Kliper russo sostituisce la Soyuz.
2. Lo stesso amministratore Griffin ha definito il CEV un "Apollo-on-steroids", ed è concettualmente derivato dall'Apollo così come il Kliper dalla Soyuz o come la Shenzhou, e in grande misura riutilizza la componentistica del sistema STS (ET per l'Heavy Lift Launch Veichle con il modulo e i SRB, a 5 stadi invece che 4 come ora). Tuttavia è attualmente l'unica soluzione fattibile per un sistema che deve essere in grado di arrivare sulla Luna o, ancora più importante, su Marte, e rientrare sulla terra senza avere gli incovenienti derivati da un sistema con orbiter dotato di ali e quello di un side-mounted veichle come nel caso dell'attuale Shuttle, troppo esposto come abbiamo visto al rischio di essere colpito da detriti dell'ET.
3. Il Kliper è un sistema leggermente più avanzato in quanto usa un lifting-body con delle alette laterali in modo da avere direzionalità in fase di rientro, ma anche per questo è un progetto un pò più lungo (che cmq è partito prima, nel 2004).
beh appunto mi aspettavo più una soluzione simile a quella del kliper...
1. Non esiste alcun sostituto dello Shuttle, nel senso di un sistema simile costituito da un orbiter "delta winged". Il progetto STS era destinato solo alle attività in LEO (orbita bassa terrestre), sarà il CEV a sostituire le funzioni dello Shuttle per il trasporto degli astronauti alla ISS, così come il Kliper russo sostituisce la Soyuz.
2. Lo stesso amministratore Griffin ha definito il CEV un "Apollo-on-steroids", ed è concettualmente derivato dall'Apollo così come il Kliper dalla Soyuz o come la Shenzhou, e in grande misura riutilizza la componentistica del sistema STS (ET per l'Heavy Lift Launch Veichle con il modulo e i SRB, a 5 stadi invece che 4 come ora). Tuttavia è attualmente l'unica soluzione fattibile per un sistema che deve essere in grado di arrivare sulla Luna o, ancora più importante, su Marte, e rientrare sulla terra senza avere gli incovenienti derivati da un sistema con orbiter dotato di ali e quello di un side-mounted veichle come nel caso dell'attuale Shuttle, troppo esposto come abbiamo visto al rischio di essere colpito da detriti dell'ET.
3. Il Kliper è un sistema leggermente più avanzato in quanto usa un lifting-body con delle alette laterali in modo da avere direzionalità in fase di rientro, ma anche per questo è un progetto un pò più lungo (che cmq è partito prima, nel 2004).
Quindi piu' nessun progetto di "delta winged orbiter(s)" in un futuro a medio-lungo termine?
Chiedo questo perche' gli shuttle hanno effettuato circa 30 missioni ciascuno (dimstrando quindi la completa riutilizzabilita' dell'orbiter e di gran parte del sistema shuttle), mentre il CEV verrebbe smantellato dopo 10 viaggi..
Phantom II
21-09-2005, 20:42
1. Non esiste alcun sostituto dello Shuttle, nel senso di un sistema simile costituito da un orbiter "delta winged". Il progetto STS era destinato solo alle attività in LEO (orbita bassa terrestre), sarà il CEV a sostituire le funzioni dello Shuttle per il trasporto degli astronauti alla ISS, così come il Kliper russo sostituisce la Soyuz.
In poche parole fine dell'era Shuttle?
jumpermax
21-09-2005, 20:49
certo che a leggere le faq http://www.nasa.gov/missions/solarsystem/cev_faq.html
ne riporto qualcuna
[...]
Why don't we fly the shuttle to the moon?
The space shuttle is not designed for use beyond low-Earth orbit. Wings are not necessary. There are several issues that prevent the use of the space shuttle for lunar exploration. To escape the Earth's gravity, any spacecraft must attain a speed of more than 17,500 mph. The shuttle is designed for re-entry from an Earth orbital speed of 17,500 mph, not the 25,000 mph speed of a moon mission. Entering the Earth's atmosphere at this high speed would destroy the shuttle because it would exceed the wing and fuselage load limits. Currently, there is no thermal protection system that would protect the wings from such a high heat load.
Why don't we explore the moon with robotic missions (like we explore Mars)?
NASA has explored the moon using robotic spacecraft, and we plan to continue to use robotic spacecraft to collect lunar data enabling human scientists to return to its surface. Science is just one reason for returning humans to the moon. The primary reason is that the moon provides opportunities to develop technologies and techniques needed for opening the space frontier. It allows us to learn how to survive long term stays on other worlds while only three days travel time from Earth. This will build confidence that we can stay on the surface of another planet for longer periods of time and ultimately venture to Mars and beyond.
[...]
Why did NASA decide on a capsule design rather than a space plane or space shuttle style spacecraft?
A capsule has many advantages over the two other designs including:
* Safest, most reliable and affordable approach to meeting crew transportation requirements for exploration missions
* The capsule shape allows the main thermal protection system for reentry, the heat shield, to be protected (covered by the service module) until it is needed for reentry, unlike winged vehicles whose thermal protective system is exposed for ascent and on orbit.
* The capsule shape is more stable aerodynamically for entry for both nominal auto guided entries and emergency abort entries.
* Easier to integrate a launch escape tower.
How can NASA claim this is a new spacecraft, it looks like an Apollo era capsule?
The shape of the spacecraft is a product of physics. The science of space flight hasn’t changed since we started sending humans into space. This is a high tech design that combines the very best of Apollo and the space shuttle. Blunt-body, conical spacecraft simply provide the safest, most economical means of transporting crews to and from space.
Although it may have an Apollo shape, the new spacecraft will have significant advances including:
* The safest most efficient shape for going beyond low Earth orbit
* Modern day materials and manufacturing processes
* Advanced avionics
* Computers and the experience gained from 40 years of human space flight
* Increased volume. It can carry more crew and cargo.
* Improved operational efficiency and overall capability in a vehicle shaped much like the original Apollo capsule
How and where will the spacecraft land?
Unlike Apollo, the new spacecraft will be able to return to Earth and parachute safely to a ground landing, which makes recovery easier and more affordable. However, if necessary, water recovery is also an option. Preliminary landing sites include Edwards Air Force Base, Calif., Carson Flats, Nev., and Moses Lake, Wash.
Why was “shuttle derived” selected as the primary choice for the Crew Launch Vehicle, especially with the CAIB chairman Admiral Gehman and the NASA Administrator saying that the shuttle is a complex experimental spacecraft that will never be safe?
Developing a system derived from the most reliable elements of the space shuttle—the solid rocket booster and the main engines-- is the safest, most reliable, and most affordable means of meeting low-Earth orbit crew requirements. Shuttle derived refers specifically to the shuttle's solid rocket boosters and main engines not the space shuttle. We are retiring the shuttle orbiter, not the solid rocket boosters or the main engines.
Once the space shuttle is retired, we will still need heavy lift capabilities to space. Future lunar missions will require significantly greater payload to LEO than provided by the space shuttle. However, a shuttle derived heavy lift launch vehicle could lift 125 metric tons to LEO.
Also, the new spacecraft will provide its crew with a launch escape capability, something that the space shuttle does not have which, combined with its inline design, makes the new vehicle 10 times safer than the shuttle for ascent, according to NASA engineers.
When will the crew launch vehicle be available for integration with the new spacecraft? Wasn't NASA's plan to have the new spacecraft ready when the shuttle retired in 2010 allowing NASA continuous access to space?
We are working to make the new spacecraft operational by 2011, minimizing any gap in human space flight. The original proposal called for the CEV to be ready in 2014, which reflects the vision statement.
la domanda vera è se lo shuttle alla fine dei conti è stata una buona idea, se dopo 30 anni si trovano a ripartire dall'apollo come idea di base. Poi ok tutta la tecnologia shuttle verrà riutilizzata, ma l'idea di base, una navetta per trasporto persone con stiva di carico dotata di ali per rientrare in atmosfera pare abbandonata.
certo che a leggere le faq http://www.nasa.gov/missions/solarsystem/cev_faq.html
ne riporto qualcuna
la domanda vera è se lo shuttle alla fine dei conti è stata una buona idea, se dopo 30 anni si trovano a ripartire dall'apollo come idea di base. Poi ok tutta la tecnologia shuttle verrà riutilizzata, ma l'idea di base, una navetta per trasporto persone con stiva di carico dotata di ali per rientrare in atmosfera pare abbandonata.
E' un peccato.. sara' anche solo questione affettiva; ho sempre considerato lo Shuttle (orbiter) la piu' bella macchina volante costruita dall'uomo, forse anche perche' sono cresciuto guardandone i lanci in TV.
Pensavo poi che "l'evoluzione della specie" consistesse in un miglioramento dell'orbiter e dei vettori ausiliari per portarlo su.
Emotivamente parlando e' stata una doccia fredda la notizia del CEV, vedere che nell'albero genealogico dei veicoli spaziali lo Space Shuttle diventera' un ramo morto..
Bye
jumpermax
21-09-2005, 23:42
E' un peccato.. sara' anche solo questione affettiva; ho sempre considerato lo Shuttle (orbiter) la piu' bella macchina volante costruita dall'uomo, forse anche perche' sono cresciuto guardandone i lanci in TV.
Pensavo poi che "l'evoluzione della specie" consistesse in un miglioramento dell'orbiter e dei vettori ausiliari per portarlo su.
Emotivamente parlando e' stata una doccia fredda la notizia del CEV, vedere che nell'albero genealogico dei veicoli spaziali lo Space Shuttle diventera' un ramo morto..
Bye
e dire che fino a qualche anno fa si parlava di successori come questo...
http://www.fas.org/spp/guide/usa/launch/x-33.htm
la questione però è che la nasa non ha i mezzi per permettersi un veicolo lunare ed un veicolo orbitale... e i veicoli orbitali sulla luna non ci arrivano.
AlexGatti
22-09-2005, 10:02
Io sinceramente mi aspettavo un progetto a lungo termine che includesse il progressivo abbandono o la forte limitazione dei razzi chimici in favore di quelli nucleari.
Invece questo CEV sembra proprio il progetto "Saturno 5" rifatto pari pari ma con i materiali e gli avanzamenti tecnici prodotti dagli anni 60 fino ad oggi.
Un po' come se oggi ci impegnassimo a costruire un computer a valvole sbandierando che oggi siamo in grado di fare valvole che durano molto di più e sono molto più performanti che trent'anni fa.
la domanda vera è se lo shuttle alla fine dei conti è stata una buona idea, se dopo 30 anni si trovano a ripartire dall'apollo come idea di base. Poi ok tutta la tecnologia shuttle verrà riutilizzata, ma l'idea di base, una navetta per trasporto persone con stiva di carico dotata di ali per rientrare in atmosfera pare abbandonata.
Ma la risposta sta proprio nelle FAQ che hai postato!
Ragazzi, lo Shuttle inteso come sistema oltre che come orbiter, NON E' MAI STATO PROGETTATO PER ATTIVITA AL DI FUORI DELL'ORBITA BASSA TERRESTRE! E' un sistema di trasporto di mezzi e uomini (da cui il nome del proramma - Space Transportation System) tra la terra e l'orbita LEO.
Lo Shuttle nel corso di 24 anni (e ne farà almeno altri 6) ha raggiunto tutti o quasi gli obbiettivi preposti, mancando forse solo quello riguardante l'abbattimento dei costi di esercizio. Ma ha dimostrato con successo che:
- E' possibile l'uso di una navetta, riutilizzabile, dotata di superfici alari per la portanza e la manovrabilità in modo da poter atterrare planando come un aeroplano, in orbita terrestre.
- E' possibile con l'uso di questo sistema il trasporto affidabile di persone e mezzi in orbita, in particolar modo satelliti, fino a interi moduli e sistemi per la costruzione di una stazione spaziale permanente.
Detto questo non è possibile utilizzare lo shuttle per ovvie ragioni, riprogettare da zero un sistema del genere per adattarlo a missioni sulla Luna o, ancora più assurdo, su Marte, costerebbe una cifra talmente alta che nessun paese potrebbe da solo affrontarla, senza parlare del fatto che nessun Congresso approverebbe mai un finanziamento simile.
Qui non si tratta di tornare indietro, si tratta del fatto che un sistema in-line con orbiter a forma di capsula è il modo più sicuro, affidabile, veloce, oltre che essere più economico, di trasportare astronauti sulla Luna o su Marte.
Anche perchè un sistema come lo shuttle, a partire dalla struttura dello stack con un carico esterno pone problemi di sicurezza (come abbiamo visto) più altri problemi tecnici quasi insormontabili con la tecnologia attuale, considerando sempre il fattore costi.
Un po' come se oggi ci impegnassimo a costruire un computer a valvole sbandierando che oggi siamo in grado di fare valvole che durano molto di più e sono molto più performanti che trent'anni fa.
C'è una sottile ma fondamentale differenza: il sistema di riferimento.
Oggi con un computer a valvole non faresti un tubo, perchè per quanto tu grosso lo costruisca, non arrivarebbe mai alla potenza di calcolo di un qualsiasi computer di medio livello.
Al contrario, non servono supercomputer per andare nello spazio, oltre al fatto che non essendo cambiate le leggi fisiche, una struttura come le capsule degli anni '60, rimane quella ottimale, più sicura ed economica.
AlexGatti
22-09-2005, 11:40
C'è una sottile ma fondamentale differenza: il sistema di riferimento.
Oggi con un computer a valvole non faresti un tubo, perchè per quanto tu grosso lo costruisca, non arrivarebbe mai alla potenza di calcolo di un qualsiasi computer di medio livello.
Al contrario, non servono supercomputer per andare nello spazio, oltre al fatto che non essendo cambiate le leggi fisiche, una struttura come le capsule degli anni '60, rimane quella ottimale, più sicura ed economica.
Fino ad un certo punto.
Con i razzi chimici fino alla luna tutto ok, anche se mi sembra un po' tirato stabilire un insediamento umano sulla luna (http://www.google.com/jobs/lunar_job.html) contando su questo tipo di collegamento.
Oltre la luna tutto diventa incredibilmente più difficile per l'esplorazione umana (non robotica) basata su razzi a combustibile chimico.
Perciò m'aspettavo almeno un accenno ad un futuro cambio di tecnologia verso il nucleare.
Phantom II
22-09-2005, 12:45
Io sinceramente mi aspettavo un progetto a lungo termine che includesse il progressivo abbandono o la forte limitazione dei razzi chimici in favore di quelli nucleari.
In cosa consistono i razzi nucleari?
jumpermax
22-09-2005, 12:47
C'è una sottile ma fondamentale differenza: il sistema di riferimento.
Oggi con un computer a valvole non faresti un tubo, perchè per quanto tu grosso lo costruisca, non arrivarebbe mai alla potenza di calcolo di un qualsiasi computer di medio livello.
Al contrario, non servono supercomputer per andare nello spazio, oltre al fatto che non essendo cambiate le leggi fisiche, una struttura come le capsule degli anni '60, rimane quella ottimale, più sicura ed economica.
il che vuol dire che dagli anni 60 ad oggi non sono stati fatti passi avanti significativi... il fallimento dell'x33 e x 34 è stato pesante. Senza sistemi più economici per la messa in orbita non credo si vada molto oltre stazioni come l'iss.
Con questi costi la cosa più sensata è continuare a mandare sonde automatizzate.... pesano meno, sono più adatte a funzionare nello spazio e se qualcosa va storto c'è solo il danno economico...
AlexGatti
22-09-2005, 13:09
In cosa consistono i razzi nucleari?
io ho letto diverse cosette su internet, ecco alcuni indirizzi interessanti
http://www.lascruces.com/~mrpbar/rocket.html
http://www.csmonitor.com/2002/0228/p14s01-stss.html
http://www.space.com/scienceastronomy/solarsystem/nuclearmars_000521.html
http://www.nuclearspace.com/
http://www.nuclearspace.com/A_PWrussview_FINX.htm
AlexGatti
22-09-2005, 13:12
il che vuol dire che dagli anni 60 ad oggi non sono stati fatti passi avanti significativi... il fallimento dell'x33 e x 34 è stato pesante. Senza sistemi più economici per la messa in orbita non credo si vada molto oltre stazioni come l'iss.
Con questi costi la cosa più sensata è continuare a mandare sonde automatizzate.... pesano meno, sono più adatte a funzionare nello spazio e se qualcosa va storto c'è solo il danno economico...
per i costi occorrerebbe investire su questo : http://en.wikipedia.org/wiki/Space_elevator
E' vero che per realizzarlo dobbiamo spingere al limite le tecnologie attuali, ma secondo me ne vale la pena (anche per le ricadute tecnologiche).
il che vuol dire che dagli anni 60 ad oggi non sono stati fatti passi avanti significativi... il fallimento dell'x33 e x 34 è stato pesante. Senza sistemi più economici per la messa in orbita non credo si vada molto oltre stazioni come l'iss.
Con questi costi la cosa più sensata è continuare a mandare sonde automatizzate.... pesano meno, sono più adatte a funzionare nello spazio e se qualcosa va storto c'è solo il danno economico...
Scusa ma X-33 ed X-34 erano dei programmi per sperimentare una via di mezzo tra lifting bodies e flying wings, e cmq erano sempre limitati all'orbita terrestre, non certo a missioni verso altri pianeti!
Detto questo, non c'è nulla di più economico di un sistema come il CEV, ed anche come costi di esercizio sarà più conveniente dell'attuale programma.
Non c'è nessun SpaceElevator o razzo nucleare nel futuro...
il nucleare verrà utilizzato anche per marte solo sotto froma di RTG per generare energia, non per la propulsione.
jumpermax
22-09-2005, 13:33
Scusa ma X-33 ed X-34 erano dei programmi per sperimentare una via di mezzo tra lifting bodies e flying wings, e cmq erano sempre limitati all'orbita terrestre, non certo a missioni verso altri pianeti!
Detto questo, non c'è nulla di più economico di un sistema come il CEV, ed anche come costi di esercizio sarà più conveniente dell'attuale programma.
La chiave per arrivare su altri pianeti è riuscire ridurre drasticamente i costi di messa in orbita, in questo modo potrebbe essere possibile assemblare veicoli più grandi direttamente nello spazio. Ora come ora già portare solo un kg di materiale sulla ISS ha costi proibitivi...
e pensare che la nasa scarto il bellissimo Delta clipper 10 anni fà.
Ottimo veicolo ihmo per l orbita bassa come cargo per iss
AlexGatti
22-09-2005, 14:07
Non c'è nessun SpaceElevator o razzo nucleare nel futuro...
il nucleare verrà utilizzato anche per marte solo sotto froma di RTG per generare energia, non per la propulsione.
E' proprio questo che mi preoccupa.
Queste cose non sono (o non vengono viste) nel nostro futuro non perchè non servano o non siano fattibili, ma per miopia (rigorosamente IMHO) e paura di sperimentare qualcosa di nuovo.
La chiave per arrivare su altri pianeti è riuscire ridurre drasticamente i costi di messa in orbita, in questo modo potrebbe essere possibile assemblare veicoli più grandi direttamente nello spazio. Ora come ora già portare solo un kg di materiale sulla ISS ha costi proibitivi...
Finchè non subentrerà l'industria privata i costi saranno sempre elevati... certo, basterebbero anche maggiori cooperazioni internazionali, ma se pensi che la NASA ancora non può acquistare oltre un certo quantitativo (e di tipologia) di tecnologia dai Russi per la gestione della ISS, capisci come questo sia difficile.
Semmai è da seguire con grande interesse il progetto russo del Kliper che vederà molto probabilmente l'ESA entrarvi a breve (la decisione sarà presa in occasione del prossimo consiglio dei ministri ESA a dicembre).
PS: nota cmq che già il programma della NASA vede per la prima volta una fase di "assemblaggio" in orbita, dato che, al contrario del programma Apollo, il CEV e il LSM veranno uniti in orbita dopo che prima il lanciatore cargo e in seguito il lanciatore con il CEV saranno stati lanciati dal KSC.
E' proprio questo che mi preoccupa.
Queste cose non sono (o non vengono viste) nel nostro futuro non perchè non servano o non siano fattibili, ma per miopia (rigorosamente IMHO) e paura di sperimentare qualcosa di nuovo.
Ma dai... i motivi sono presto detti:
1. Costi di progetto e svilippo (indefinibili dato il tipo di tecnologia)
2. Tempi di progetto e messa in esercizio
3. Scarsa utilità rispetto ai costi di investimento
4. Problemi tecnici legati alla pericolosità di lanciare in orbita reattori nucleari
E poi lo ripeto, mettete da parte ogni ipotesi di razzi vettori nucleari (se non per la propulsione di sonde, cosa per altro tutta da sperimentare), non è proprio fattibile.
Ad oggi il modo più sicuro e fattibile di lanciare razzi in orbita è quello di utilizzare propellenti chimici, in particolari allo stato solido (che è tra l'altro il sistema più economico).
Per quanto riguarda il nucleare i prossimi sviluppi possibili riguardano sistemi RTG e derivati per la produzione di elettricità, mentre per la propulsione esiste il progetto Prometheus legato ad una sonda interplanetaria di eplorazione del sistema di Giove e dei suoi satelliti (il cui futuro però è ad oggi non ben definito).
Il sistema più promettende di propulsione a basso costo rimane quello dei motori a ioni e a solar sails, suii quali americani, russi ed europei lavorano con diverse missioni attualmentte.
jumpermax
22-09-2005, 15:26
Finchè non subentrerà l'industria privata i costi saranno sempre elevati... certo, basterebbero anche maggiori cooperazioni internazionali, ma se pensi che la NASA ancora non può acquistare oltre un certo quantitativo (e di tipologia) di tecnologia dai Russi per la gestione della ISS, capisci come questo sia difficile.
Semmai è da seguire con grande interesse il progetto russo del Kliper che vederà molto probabilmente l'ESA entrarvi a breve (la decisione sarà presa in occasione del prossimo consiglio dei ministri ESA a dicembre.
PS: nota cmq che già il programma della NASA vede per la prima volta una fase di "assemblaggio" in orbita, dato che, al contrario del programma Apollo, il CEV e il LSM veranno uniti in orbita dopo che prima il lanciatore cargo e in seguito il lanciatore con il CEV saranno stati lanciati dal KSC.
Beh i privati cmq ci sono è che i committenti sono sempre pubblici. C'è stato questa breve parentesi http://www.hwupgrade.it/forum/showthread.php?s=&threadid=710798
ma da un po' non se ne sente più parlare. Quello che mi chiedo alla fine è se alla NASA conviene usare questo ApolloII per le missioni alla ISS dove il klipier dovrebbe essere più adatto. Per il resto si hai ragione la parte interessante è proprio l'assemblaggio in orbita, per quanto sia per lo più un semplice aggancio.
jumpermax
22-09-2005, 15:28
Il sistema più promettende di propulsione a basso costo rimane quello dei motori a ioni e a solar sails, suii quali americani, russi ed europei lavorano con diverse missioni attualmentte.
il sistema ionico però funge bene solo per la propulsione spaziale... anzi è forse il primo propulsore spaziale vero e proprio.
AlexGatti
22-09-2005, 15:31
Ma dai... i motivi sono presto detti:
1. Costi di progetto e svilippo (indefinibili dato il tipo di tecnologia)
Riporto un link già riportato prima: PRATT & WHITNEY THERMAL NUCLEAR ROCKET ENTRY: TRITON
http://www.nuclearspace.com/A_PWrussview_FINX.htm
Il progetto sembra piuttosto avanti.
2. Tempi di progetto e messa in esercizio
Non ho trovato nulla che dica che ci possano volere più di 15 anni
3. Scarsa utilità rispetto ai costi di investimento
Dici che dimezzare il tempo di andata e ritorno verso marte è di scarsa utilità? Vacci col "solar sail" poi mi dici.
4. Problemi tecnici legati alla pericolosità di lanciare in orbita reattori nucleari
Si possono risolvere, non sono reattori particolarmente grandi e la pericolosità permane solo finchè non lasciano l'orbita terrestre. Pensi comunque che un razzo chimico sia molto meno pericoloso? e perchè mai?
E poi lo ripeto, mettete da parte ogni ipotesi di razzi vettori nucleari (se non per la propulsione di sonde, cosa per altro tutta da sperimentare), non è proprio fattibile.
Tu dici? guarda cosa dice la NASA in proposito (datato maggio 2005 non vent'anni fa)
http://www.space4peace.org/actions/nasa_space_nuke_eis.htm
EDIT: il link precedente è la risposta dei _detrattori_ del nucleare nello spazio alle affermazioni della NASA _a_favore_ del nucleare.
Aggiungo un altro link.
http://edition.cnn.com/2005/TECH/space/09/02/space.plutonium.reut/
Ad oggi il modo più sicuro e fattibile di lanciare razzi in orbita è quello di utilizzare propellenti chimici, in particolari allo stato solido (che è tra l'altro il sistema più economico).
Si, ok, ma oltre la Low Earth Orbit?
Phantom II
23-09-2005, 12:01
io ho letto diverse cosette su internet, ecco alcuni indirizzi interessanti
http://www.lascruces.com/~mrpbar/rocket.html
http://www.csmonitor.com/2002/0228/p14s01-stss.html
http://www.space.com/scienceastronomy/solarsystem/nuclearmars_000521.html
http://www.nuclearspace.com/
http://www.nuclearspace.com/A_PWrussview_FINX.htm
Davvero molto interessante. Devo tornare in biblioteca a cercare dei volumi molto ben fatti che trattavano questo argomento, anche perchè in italiano sul web ho trovato poco o nulla.
Ma quanto sarebbe grande il modulo per l'equipaggio del CEV?
Perche', a meno che non sia sufficientemente spazioso, gli astronauti potrebbero accusare qualche problemino di claustrofobia lungo il viaggio per marte..
(a meno che non sia prevista un'altra versione piu' "dopata" e capiente dell'attuale progetto)
jumpermax
23-09-2005, 12:15
Riporto un link già riportato prima: PRATT & WHITNEY THERMAL NUCLEAR ROCKET ENTRY: TRITON
http://www.nuclearspace.com/A_PWrussview_FINX.htm
Il progetto sembra piuttosto avanti.
Non ho trovato nulla che dica che ci possano volere più di 15 anni
Dici che dimezzare il tempo di andata e ritorno verso marte è di scarsa utilità? Vacci col "solar sail" poi mi dici.
Si possono risolvere, non sono reattori particolarmente grandi e la pericolosità permane solo finchè non lasciano l'orbita terrestre. Pensi comunque che un razzo chimico sia molto meno pericoloso? e perchè mai?
Tu dici? guarda cosa dice la NASA in proposito (datato maggio 2005 non vent'anni fa)
http://www.space4peace.org/actions/nasa_space_nuke_eis.htm
EDIT: il link precedente è la risposta dei _detrattori_ del nucleare nello spazio alle affermazioni della NASA _a_favore_ del nucleare.
Aggiungo un altro link.
http://edition.cnn.com/2005/TECH/space/09/02/space.plutonium.reut/
Si, ok, ma oltre la Low Earth Orbit?
Il problema della propulsione nello spazio in realtà non è poi così grave, i motori ionici stanno dando buoni risultati e un tragitto fino a Marte sembra proprio il raggio d'azione ideale (bastano i pannelli solari per l'alimentazione). Il grosso problema resta il costo di messa in orbita di questi veicoli, che costringono a limitare all'essenziale le dotazioni di questi mezzi.
Riporto un link già riportato prima: PRATT & WHITNEY THERMAL NUCLEAR ROCKET ENTRY: TRITON
http://www.nuclearspace.com/A_PWrussview_FINX.htm
Il progetto sembra piuttosto avanti.
Che, così com'è, se supererà tutte la fasi sperimentali, non avrà mai l'avallo del Congresso se non vengono prima cambiate i trattati sull'uso di materiale nucleare per le missioni spaziali.
Non ho trovato nulla che dica che ci possano volere più di 15 anni
La NASA per il progetto Prometheus ha stimato 12 anni, figurati per i razzi a reattori nucleari.
Dici che dimezzare il tempo di andata e ritorno verso marte è di scarsa utilità? Vacci col "solar sail" poi mi dici.
Ma chi ha mai parlato di utilizzare il sistema solar sail per le missioni umane?
Per dimezzare i tempi di percorrenza occorrerebbe uscire dall'orbita terrestre a velocità non inferiori ai 40.000 km/h, invece dei 25.000 necessari oggi per 7 mesi di viaggio (minimo).
Si possono risolvere, non sono reattori particolarmente grandi e la pericolosità permane solo finchè non lasciano l'orbita terrestre.
Hai detto niente. Guarda che è proprio questo il punto, hai idea di quante leggi federali e trattati internazionali debbano essere rivisti per permettere l'uso della propulsione nucleare nell'atmosfera?
Pensi comunque che un razzo chimico sia molto meno pericoloso? e perchè mai?
Perchè non utilizza una reazione nucleare per generare l'energia necessaria alla propulsione, forse?
Tra l'altro l'uso di reattori nucleari pone il grande problema rigurardante il burn-out degli stage al rientro oppure il recupero.
Tu dici? guarda cosa dice la NASA in proposito (datato maggio 2005 non vent'anni fa)
http://www.space4peace.org/actions/nasa_space_nuke_eis.htm
EDIT: il link precedente è la risposta dei _detrattori_ del nucleare nello spazio alle affermazioni della NASA _a_favore_ del nucleare.
Aggiungo un altro link.
http://edition.cnn.com/2005/TECH/space/09/02/space.plutonium.reut/
Ma mica è un progetto della NASA, è un progetto del DOE per permettere l'uso di Plutonio 238 per le future missioni spaziali, tra cui appunto i nuovi RTG.
AlexGatti
23-09-2005, 13:03
Che, così com'è, se supererà tutte la fasi sperimentali, non avrà mai l'avallo del Congresso se non vengono prima cambiate i trattati sull'uso di materiale nucleare per le missioni spaziali.
Direi che mi dai ragione, non li facciamo, non perchè non ci servano o perchè pensiamo di non riuscire a farli, ma per miopia politica.
Per dimezzare i tempi di percorrenza occorrerebbe uscire dall'orbita terrestre a velocità non inferiori ai 40.000 km/h, invece dei 25.000 necessari oggi per 7 mesi di viaggio (minimo).
Hai detto niente con un razzo che si porta dietro tonnellate e tonnellate di combustibile chimico
Hai detto niente. Guarda che è proprio questo il punto, hai idea di quante leggi federali e trattati internazionali debbano essere rivisti per permettere l'uso della propulsione nucleare nell'atmosfera?
Miopia politica dunque... quando per i mari scorrazzano reattori nucleari (nei sommergibili) o che stanno ben fissi sulla terra (centrali)
Perchè non utilizza una reazione nucleare per generare l'energia necessaria alla propulsione, forse?
Ommiodddio! l'energia del diavolo usata per volare! Invece quando lanci una sonda con un RTG a bordo (e quindi plutonio) in cima ad un palazzo fatto di idrocarburi questo è molto più sicuro vero? A me non sembra.
Tra l'altro l'uso di reattori nucleari pone il grande problema rigurardante il burn-out degli stage al rientro oppure il recupero.
E' vero, non sono tutte rose e fiori, ma sono problemi risolvibili. Certo non puoi far decollare o atterrare una nave nucleare a cape canaveral con tutta la gente intorno, dovrai fare una base nel deserto onde limitare i rischi in fase di lancio/rientro. Ma ci sono tutto un range di precauzioni che si possono prendere e che riducono i rischi lasciando molti vantaggi.
Ma mica è un progetto della NASA, è un progetto del DOE per permettere l'uso di Plutonio 238 per le future missioni spaziali, tra cui appunto i nuovi RTG.
Qui ho toppato. Ribadisco che mandare in orbita un rtg con un razzo chimico non mi sembra molto diverso che mandare in orbita un razzo nucleare
jumpermax
23-09-2005, 13:33
Direi che mi dai ragione, non li facciamo, non perchè non ci servano o perchè pensiamo di non riuscire a farli, ma per miopia politica.
Hai detto niente con un razzo che si porta dietro tonnellate e tonnellate di combustibile chimico
Miopia politica dunque... quando per i mari scorrazzano reattori nucleari (nei sommergibili) o che stanno ben fissi sulla terra (centrali)
Ommiodddio! l'energia del diavolo usata per volare! Invece quando lanci una sonda con un RTG a bordo (e quindi plutonio) in cima ad un palazzo fatto di idrocarburi questo è molto più sicuro vero? A me non sembra.
E' vero, non sono tutte rose e fiori, ma sono problemi risolvibili. Certo non puoi far decollare o atterrare una nave nucleare a cape canaveral con tutta la gente intorno, dovrai fare una base nel deserto onde limitare i rischi in fase di lancio/rientro. Ma ci sono tutto un range di precauzioni che si possono prendere e che riducono i rischi lasciando molti vantaggi.
Qui ho toppato. Ribadisco che
Miopia politica... già è difficile far capire alla gente perchè si spendono soldi nella ricerca spaziale (la miopia politica è nulla al confronto) tu pensi che un governo si metta a finanziare un progetto che non solo è costoso ma anche potenzialmente pericoloso? Per un incidente come quello dello shuttle la NASA è stata messa in ginocchio per anni, un incidente con un veicolo a propulsione nucleare avrebbe conseguenze devastanti per la ricerca stessa. Allo stato attuale delle cose non è previsto che ci si spinga oltre Marte e fin li i motori ionici funzionano benissimo senza bisogno di combustibile nucleare. Chiaro che se si inizia a parlare di Giove o Saturno la questione cambia ma allo stato attuale delle cose ci sono già tantissimi problemi da risolvere e poche risorse per farlo. Per avere un veicolo lunare la NASA ha dovuto rinunciare a possibili eredi dello shuttle ed è già fatica mantenere in piedi l'ISS... abbiamo una tecnologia buona, già collaudata perfezionabile ed integrabile in futuro con energia nucleare... sfruttiamola.
Direi che mi dai ragione, non li facciamo, non perchè non ci servano o perchè pensiamo di non riuscire a farli, ma per miopia politica.
Non solo, te l'ho detto, ci sono ragioni economiche, di tempi e di sicurezza.
Hai detto niente con un razzo che si porta dietro tonnellate e tonnellate di combustibile chimico
Che rimane la soluzione ottimale per avere il massimo di spinta al lancio al costo più basso.
Miopia politica dunque... quando per i mari scorrazzano reattori nucleari (nei sommergibili) o che stanno ben fissi sulla terra (centrali)
Vedi, è leggeermente diverso quando si tratta di lanciatori... hai idea dell'area che copre il lancio di un vettore o il rientro di una navetta/sonda o degli stage esausti?
Ommiodddio! l'energia del diavolo usata per volare! Invece quando lanci una sonda con un RTG a bordo (e quindi plutonio) in cima ad un palazzo fatto di idrocarburi questo è molto più sicuro vero? A me non sembra.
E' vero, non sono tutte rose e fiori, ma sono problemi risolvibili. Certo non puoi far decollare o atterrare una nave nucleare a cape canaveral con tutta la gente intorno, dovrai fare una base nel deserto onde limitare i rischi in fase di lancio/rientro. Ma ci sono tutto un range di precauzioni che si possono prendere e che riducono i rischi lasciando molti vantaggi.
Ma vuoi paragonare un reattore nucleare con un RTG? Un RTG NON E' un reattore nuclerare. In un RTG non avviene una reazione (è un generatore termoelettrico a radio-isotopi, da cui il nome), ma si produce energia elettrica attraverso l'emissione di radiazioni generate dal naturale decadimento del Plutonio 238, senza contare che il quantitativo di materiale fissile è assolutamente minimo.
Al tempo del progetto della missione Cassini (che usa 3 RTG e diversi RHU, Radioisotope Heater Unit), vi furono parecchie polemiche e la NASA fece uno studio approfondito (il rapporto conta centinaia di pagine) assieme al DOE dove veniva spiegato che in caso di un "major malfunction event" che avesse danneggiato in modo irreparabile gli RTG il diossido di plutonio disperso nell'atmofera non avrebbe comportato un aumento sopra i limiti della normale radiazione terrestre nella biosfera.
Cosa assai diversa nel caso di un reattore nucleare che necessiterebbe di alcuni kg di materiale fissile e del necessario raffreddante.
jumpermax
23-09-2005, 15:55
Non solo, te l'ho detto, ci sono ragioni economiche, di tempi e di sicurezza.
Che rimane la soluzione ottimale per avere il massimo di spinta al lancio al costo più basso.
Vedi, è leggeermente diverso quando si tratta di lanciatori... hai idea dell'area che copre il lancio di un vettore o il rientro di una navetta/sonda o degli stage esausti?
Ma vuoi paragonare un reattore nucleare con un RTG? Un RTG NON E' un reattore nuclerare. In un RTG non avviene una reazione (è un generatore termoelettrico a radio-isotopi, da cui il nome), ma si produce energia elettrica attraverso l'emissione di radiazioni generate dal naturale decadimento del Plutonio 238, senza contare che il quantitativo di materiale fissile è assolutamente minimo.
Al tempo del progetto della missione Cassini (che usa 3 RTG e diversi RHU, Radioisotope Heater Unit), vi furono parecchie polemiche e la NASA fece uno studio approfondito (il rapporto conta centinaia di pagine) assieme al DOE dove veniva spiegato che in caso di un "major malfunction event" che avesse danneggiato in modo irreparabile gli RTG il diossido di plutonio disperso nell'atmofera non avrebbe comportato un aumento sopra i limiti della normale radiazione terrestre nella biosfera.
Cosa assai diversa nel caso di un reattore nucleare che necessiterebbe di alcuni kg di materiale fissile e del necessario raffreddante.
un bel thread sui sistemi di propulsione gio ci manca... ;)
un bel thread sui sistemi di propulsione gio ci manca... ;)
si può fare certo, però occorrerebbe qualcuno più preparato su questi argomenti... cmq vedrò che riesco a trovare...
^Robbie^
23-09-2005, 16:25
si può fare certo, però occorrerebbe qualcuno più preparato su questi argomenti... cmq vedrò che riesco a trovare...
Buon lavoro, credo che interesserà parecchie persone.
Byez!
imho finchè nn ci sarà un qualche sistema x ricreare gravità artificialemte la vedo molto dura visitare pianeti oltre marte, e nn parlo di creare gravità tramite forza centrifuga ma qualcosa di più tecnologico, siamo ancora troppo indietro x queste cose, ci vorrano minimo 100 anni prima di vedere astronavi da fantascienza grandi centinaia di metri quadrati, anzi forse qulche centinaio di anni! ;)
un bel thread sui sistemi di propulsione gio ci manca... ;)
verissimo sarebbe veramente interessante!
ma il motore ionico è quello di rubbia?
verissimo sarebbe veramente interessante!
ma il motore ionico è quello di rubbia?
No, il motore ionico è (anche) questo: http://nmp.jpl.nasa.gov/ds1/tech/sep.html
E pure questo: http://sci.esa.int/science-e/www/area/index.cfm?fareaid=10
imho finchè nn ci sarà un qualche sistema x ricreare gravità artificialemte la vedo molto dura visitare pianeti oltre marte, e nn parlo di creare gravità tramite forza centrifuga ma qualcosa di più tecnologico, siamo ancora troppo indietro x queste cose, ci vorrano minimo 100 anni prima di vedere astronavi da fantascienza grandi centinaia di metri quadrati, anzi forse qulche centinaio di anni! ;)
Il problema è che non è dimostrato che sia scientificamente possibile qualcosa del genere (anzi, allo stato attuale delle conoscenze è praticamente impossibile): pertanto qualcosa del genere potrebbe non esistere mai! ;)
^Robbie^
25-09-2005, 22:27
imho finchè nn ci sarà un qualche sistema x ricreare gravità artificialemte la vedo molto dura visitare pianeti oltre marte, e nn parlo di creare gravità tramite forza centrifuga ma qualcosa di più tecnologico, siamo ancora troppo indietro x queste cose, ci vorrano minimo 100 anni prima di vedere astronavi da fantascienza grandi centinaia di metri quadrati, anzi forse qulche centinaio di anni! ;)
Per fare quello che dici tu ci vorrà purtroppo ancora parecchio tempo. Sappiamo ancora poco di come funzioni la gravità e se esistano o meno le particelle chiamate gravitoni. Se non erro in questo periodo doveva partire un progetto atto proprio a dimostrare l'esistenza dei gravitoni.
Cmq il motore ionico sembra essere il migliore candidato per la prossima esplorazione spaziale.
Byez!
Se non erro in questo periodo doveva partire un progetto atto proprio a dimostrare l'esistenza dei gravitoni.
No, il progetto è VIRGO per le onde gravitazionali, i gravitoni non c'entrano, anzi, dal punto di vista teorico sono ancora controversi (ci sono teorie in sviluppo in cui non compaiono, almeno non direttamente).
I combustibili chimici ancora per molto tempo saranno l'unica soluzione. Se sarà fattibile l'ascensore spaziale (ma per un secolo almeno non se ne parla) si riusciranno almeno ad abbattere i costi di messa in orbita.
Comunque anche l'ESA sembra interessata alle missioni umane su Luna e Marte, infatti ha lanciato l'ambizioso programma Aurora:
http://www.esa.int/SPECIALS/Aurora/ESA9LZPV16D_0.html
forse si vedrà una nuova corsa allo spazio, con soggetti diversi :D
goldorak
26-09-2005, 09:15
PS: nota cmq che già il programma della NASA vede per la prima volta una fase di "assemblaggio" in orbita, dato che, al contrario del programma Apollo, il CEV e il LSM veranno uniti in orbita dopo che prima il lanciatore cargo e in seguito il lanciatore con il CEV saranno stati lanciati dal KSC.
He he....Von Braun era un vero genio oltre ad essere un visionario :D
razziadacqua
26-09-2005, 17:20
Al contrario, non servono supercomputer per andare nello spazio,
verissimo...
considerando il fatto che lo shuttle va avanti con 14 processori 486 interfaccia monocromatica e il linguaggio di programmazione e calcolo delle orbite è lo stesso di 30anni fà :)...(mi era stato detto il nome...fontral?fondral?boh non mi ricordo)
direi piuttosto che servono più super cervelloni umani...visto che siamo in grado di far skiantare una sonda su marte perchè un gruppo di lavoro del Jpl lavora in yard e un gruppo in metri :D
duchetto
26-09-2005, 17:24
verissimo...
considerando il fatto che lo shuttle va avanti con 14 processori 486 interfaccia monocromatica e il linguaggio di programmazione e calcolo delle orbite è lo stesso di 30anni fà :)...(mi era stato detto il nome...fontral?fondral?boh non mi ricordo)
fortran?
razziadacqua
26-09-2005, 17:27
La chiave per arrivare su altri pianeti è riuscire ridurre drasticamente i costi di messa in orbita, in questo modo potrebbe essere possibile assemblare veicoli più grandi direttamente nello spazio. Ora come ora già portare solo un kg di materiale sulla ISS ha costi proibitivi...
giustissimissimo...quanto costa il carburante per Kilo di zavorra??mi ricordavo una cosa allucinante come...20mln di lire per Kilo?o 500mln al quintale???
illuminatemi non ricordo più bene....
razziadacqua
26-09-2005, 17:41
fortran?
se è un linguaggio di programmazione,è vecchio e serve per fare calcoli...allora è quello :D ripeto non mi ricordo,comincia con la F...no ma si si è quello...la persona con cui parlavo del resto è reduce da un mezzo ictus poretta :D la parola è già un miracolo per lui.
se è un linguaggio di programmazione,è vecchio e serve per fare calcoli...
Vecchio? L'ultima versione è del '99 :D
Sul fatto che per andare nello spazio non servono supercomputer, sono d'accordo se si intende strumentazione... per il progetto credo che invece possano essere molto utili :D
Tanto per fare un esempio la SpaceShipOne è stata progettata con simulazioni, senza camera del vento, e i voli di prova sono stati usati per rifinire il progetto.
considerando il fatto che lo shuttle va avanti con 14 processori 486 interfaccia monocromatica
Dove l'hai letto questo?
Gli orbiter sono dotati di 3 computer indipendenti basati su processori IBM, aggiornati almeno 2 volte (se ricordo bene) nel corso della loro vita. I terminali sono dotati di display a colori dalla fine degli anni '80 (Multiple Function Electronic Display).
Video: Atlantis MEDS upgrade (2000) (http://www.nasaspaceflight.com/docs/sts101meds_56.ram)
jumpermax
26-09-2005, 21:26
Vecchio? L'ultima versione è del '99 :D
Sul fatto che per andare nello spazio non servono supercomputer, sono d'accordo se si intende strumentazione... per il progetto credo che invece possano essere molto utili :D
Tanto per fare un esempio la SpaceShipOne è stata progettata con simulazioni, senza camera del vento, e i voli di prova sono stati usati per rifinire il progetto.
beh non servono è poi relativo... non sono fondamentali forse.
IcEMaN666
26-09-2005, 22:02
uff io vedo ste cose, mi meraviglio e ci rimango sempre male.
io oggi ho iniziato ingegneria aerospaziale, lì questa notte ci sono laureati alla nasa con la tutina e quello stemma da sbavo sulla giacca che stanno studiando come sparare UOMINI sulla luna... :cry:
razziadacqua
27-09-2005, 16:22
Dove l'hai letto questo?
un professore di ingegneria meccanica dell università di modena e responsabile del laboratorio tecnologico...adesso sull interfaccia a colori o meno non sò,cmq a quanto detto poco ma sicuro non usano ne Xp ne Linux ne Mac'Os :D solo lettere e numeri stile Commodore 64
un professore di ingegneria meccanica dell università di modena e responsabile del laboratorio tecnologico...adesso sull interfaccia a colori o meno non sò,cmq a quanto detto poco ma sicuro non usano ne Xp ne Linux ne Mac'Os :D solo lettere e numeri stile Commodore 64
Dall'epoca dell'upgrade di fine anni '80 - inizio '90 sono a cristalli liquidi in "full color". Per i computer, la documentazione ufficiale della NASA riporta(http://spaceflight.nasa.gov/shuttle/reference/shutref/orbiter/avionics/dps/gpc.html):
Five identical general-purpose computers aboard the orbiter control space shuttle vehicle systems. Each GPC is composed of two separate units, a central processor unit and an input/output processor. All five GPCs are IBM AP-101 computers. Each CPU and IOP contains a memory area for storing software and data. These memory areas are collectively referred to as the GPC's main memory.
The central processor controls access to GPC main memory for data storage and software execution and executes instructions to control vehicle systems and manipulate data. In other words, the CPU is the ''number cruncher'' that computes and controls computer functions.
The IOP formats and transmits commands to the vehicle systems, receives and validates response data from the vehicle systems and maintains the status of interfaces with the CPU and the other GPCs.
The IOP of each computer has 24 independent processors, each of which controls 24 data buses used to transmit serial digital data between the GPCs and vehicle systems, and secondary channels between the telemetry system and units that collect instrumentation data. The 24 data buses are connected to each IOP by multiplexer interface adapters that receive, convert and validate the serial data in response to discrete signals calling for available data to be transmitted or received from vehicle hardware.
During the receive mode, the multiplexer interface adapter validates the received data (notifying the IOP control logic when an error is detected) and reformats the data. During the receive mode, its transmitter is inhibited unless that particular GPC is in command of that data bus.
During the transmit mode, a multiplexer interface adapter transmits and receives 28-bit command/data words over the computer data buses. When transmitting, the MIA adds the appropriate parity and synchronization code bits to the data, reformats the data, and sends the information out over the data bus. In this mode, the MIA's receiver and transmitters are enabled.
The first three bits of the 28-bit word provide synchronization and indicate whether the information is a command or data. The next five bits identify the destination or source of the information. For command words, 19 bits identify the data transfer or operations to be performed; for data words, 16 of the 19 bits contain the data and three bits define the word validity. The last bit of each word is for an odd parity error test.
The main memory of each GPC is non-volatile (the software is retained when power is interrupted). The memory capacity of each CPU is 81,920 words, and the memory capacity of each IOP is 24,576 words; thus, the CPU and IOP constitute a total of 106,496 words.
The hardware controls for the GPCs are located on panel O6. Each computer reads the position of its corresponding output , initial program load and mode switches from discrete input lines that go directly to the GPC. Each GPC also has an output and mode talkback indicator on panel O6 that are driven from GPC output discretes.
Each GPC power on , off switch is a guarded switch. Positioning a switch to on provides the computer with triply redundant power (not through a discrete) by three essential buses-ESS1BC, 2AC and 3AB-which run through the GPC power switch. The essential bus power is transferred to remote power controllers, which permits main bus power from the three main buses (MNA, MNB and MNC) to power the GPC. There are three RPCs for the IOP and three for the CPU; thus, any GPC will function normally, even if two main or essential buses are lost.
Each computer uses over 600 watts of power. GPCs 1 and 4 are located in forward middeck avionics bay 1, GPCs 2 and 5 are located in forward middeck avionics bay 2, and GPC 3 is located in aft middeck avionics bay 3. The GPCs receive forced-air cooling from an avionics bay fan. There are two fans in each avionics bay but only one is powered at a time. If both fans in an avionics bay fail, the computers will overheat and could not be relied on to operate properly for more than 20 minutes if the initial condition is warm.
Each GPC output switch is a guarded switch with backup , normal and terminate positions. The output switch provides a hardware override to the GPC that precludes that GPC from outputting (transmitting) on the flight-critical buses. The switches for the primary avionics GN&C; GPCs are positioned to normal , which permits them to output (transmit). The backup flight system GPC switch is positioned to backup, which precludes it from outputting until it is engaged. The switch for a GPC designated on orbit to be a systems management computer is positioned to terminate since the GPC is not to command anything on the flight-critical buses.
The output talkback indicator above each output switch on panel O6 indicates gray if that GPC output is enabled and barberpole if it is not.
Each GPC receives run , stby , or halt discrete inputs from its mode switch on panel O6, which determines whether that GPC can process software. The mode switch is lever-locked in the run position. The halt position for a GPC initiates a hardware-controlled state in which no software can be executed. A GPC that fails to synchronize with others is moded to halt as soon as possible to prevent the failed computer from outputting erroneous commands. The mode talkback indicator above the mode switch for that GPC indicates barberpole when that computer is in halt.
In standby, a GPC is also in a state in which no software can be executed but is in a software-controlled state. The stby discrete allows an orderly startup or shutdown of processing. It is necessary, as a matter of procedure, for a GPC that is shifting from run to halt to be temporarily (more than one second) in the standby mode before going to halt since the standby mode allows for an orderly software cleanup and allows a GPC to be correctly initialized without an initial program load. If a GPC is moded from run to halt without pausing in standby, it may not perform its functions correctly upon being remoded to run. There is no stby indication on the mode talkback indicator above the mode switch; however, it would indicate barberpole in the transition from run to standby and run from standby to halt.
The run position permits a GPC to support its normal processing of all active software and assigned vehicle operations. Whenever a computer is moded from standby or halt to run, it initializes itself to a state in which only system software is processed (called OPS 0). If a GPC is in another OPS before being moded out of run and the initial program has not been loaded since, that software still resides in main memory; but it will not begin processing until that OPS is recalled by flight crew keyboard entry. The mode talkback indicator always reads run when that GPC switch is in run and the computer has not failed.
Placing the backup flight system GPC in standby does not stop BFS software processing or preclude BFS engagement; it only prevents the BFS from commanding.
The IPL push button indicator for a GPC on panel O6 activates the initial program load command discrete input when depressed. When the input is received, that GPC initiates an IPL from whichever mass memory unit is specified by the IPL source , MMU 1 , MMU 2 , off switch on panel O6. The talkback indicator above the mode switch for that GPC indicates IPL.
During non-critical flight periods in orbit, only one or two GPCs are used for GN&C; tasks and another for systems management and payload operations.
A GPC on orbit can also be ''freeze-dried;'' that is, it can be loaded with the software for a particular memory configuration and then moded to standby. It can then be moded to halt and powered off. Since the GPCs have non-volatile memory, the software is retained. Before an OPS transition to the loaded memory configuration, the freeze-dried GPC can be moded back to run and the appropriate OPS requested.
A simplex GPC is one in run and not a member of the redundant set, such as the BFS GPC. Systems management and payload major functions are always in a simplex GPC.
A failed GPC can be hardware-initiated, stand-alone-memory-dumped by switching the powered computer to terminate and halt and then selecting the number of the failed GPC on the GPC memory dump rotary switch on panel M042F in the crew compartment middeck. Then the GPC is moded to standby to start the dump, which takes three minutes.
Each CPU is 7.62 inches high, 10.2 inches wide and 19.55 inches long; it weighs 57 pounds. The IOPs are the same size and weight as the CPUs.
The new upgraded general-purpose computers, AP-101S from IBM, will replace the existing GPCs, AP-101B, aboard the space shuttle orbiters in mid-1990.
The upgraded GPCs allow NASA to incorporate more capabilities into the space shuttle orbiters and apply more advanced computer technologies than were available when the orbiter was first designed. The new design began in January 1984, whereas the older GPC design began in January 1972.
The upgraded computers provide 2.5 times the existing memory capacity and up to three times the existing processor speed with minimum impact on flight software. The upgraded GPCs are half the size and approximately half the weight of the old GPCs, and they require less power to operate.
The upgraded GPCs consist of a central processor unit and an input/output processor in one avionics box instead of the two separate CPU and IOP avionics boxes of the old GPCs. The upgraded GPC can perform more than 1 million benchmark tests per second in comparison to the older GPC's 400,000 operations per second. The upgraded GPCs have a semiconductor memory of 256,000 32-bit words; the older GPCs have a core memory of up to 104,000 32-bit words.
The upgraded GPCs have volatile memory, but each GPC contains a battery pack to preserve the software when the GPC is powered off.
The initial predicted reliability of the upgraded GPCs is 6,000 hours mean time between failures, with a projected growth to 10,000 hours mean time between failures. The mean time between failures for the older GPCs is 5,200 hours-more than five times better than the original reliability estimate of 1,000 hours.
The AP-101S avionics box is 19.55 inches long, 7.62 inches high and 10.2 inches wide, the same as one of the two previous GPC avionics boxes. Each of the five upgraded GPCs aboard the orbiter weighs 64 pounds, in comparison to 114 pounds for the two units of the older GPCs. This change reduces the weight of the orbiter's avionics by approximately 300 pounds and frees a volume of approximately 4.35 cubic feet in the orbiter avionics bays. The older GPCs require 650 watts of electrical power versus 550 watts for the upgraded units.
Thorough testing, documentation and integration, including minor modifications to flight software, were performed by IBM and NASA's Shuttle Avionics Integration Laboratory in NASA's Avionics Engineering Laboratory at the Johnson Space Center.
^Robbie^
27-09-2005, 18:21
Le prossime navette dovranno avere come MINIMO dei chip isolineari con bio-neural gel pack :sofico: :D
Byez!
goldorak
27-09-2005, 18:40
un professore di ingegneria meccanica dell università di modena e responsabile del laboratorio tecnologico...adesso sull interfaccia a colori o meno non sò,cmq a quanto detto poco ma sicuro non usano ne Xp ne Linux ne Mac'Os :D solo lettere e numeri stile Commodore 64
http://www.planetburrito.com/tb/space_shuttle/columbia_06.gif
Ecco uno dei computer con la sua interfaccia I/O (il piccolo schermo crt sulla destra) usati sulla flotta degli shuttle prima dell'upgrade.
http://www.aviationnow.com/media/images/awst_images/large/AW_02_21_2005_801_L.jpg
Boeing is preparing a range of Delta IV Heavy launcher options for NASA Crew Exploration Vehicle (CEV) and unmanned cargo transportation architectures to the Moon and Mars, now that the massive new rocket has been flight tested.
The Dec. 21 launch of the 232-ft. vehicle on 2 million lb. thrust marked the largest all-liquid expendable booster flown since the last Saturn V in 1973. A second Delta IV Heavy mission is scheduled for this summer carrying a U.S. Air Force missile warning satellite. The first launch carried a dummy payload (AW&ST Jan. 3, p. 23).
Boeing wants NASA to consider the Delta IV Heavy for manned CEV missions, but is also pushing the Heavy for unmanned exploration launch roles. One Delta IV Medium version could also be a CEV player.
Boeing says even modest upgrades could double the Delta Heavy's Earth orbit capability to more than 50 metric tons, including being able to fire up to 20 metric tons on escape trajectories to Mars.
The current Heavy, like that tested in December, can already send about 10 metric tons to the Moon, while modest upgrades could more than double the lunar tonnage. NASA is asking all exploration program elements to standardize on metric ton references.
Also among the options (see chart p. 50) are performance upgrades using new upper-stage engines--including the Pratt & Whitney RL60 and the Mitsubishi/Boeing MB-60.
But the Delta IV Heavy is blazing into unknown territory. And the "unknowns" for this vehicle span all the way to the Moon and Mars--and possibly oblivion in the U.S. launcher stable, if future military and exploration payloads instead use smaller Delta Medium vehicles or the Lockheed Martin Atlas V.
The IV Heavy is also competing against shuttle-derived or still proprietary commercial concepts, including options that might use the Delta IV's RS-68 engines. So, while a powerful and advanced new launcher, the Heavy remains in search of a role more robust than the limited military and commercial markets that brought it into existence, initially as a U.S. Air Force demonstration.
http://www.aviationnow.com/media/images/awst_images/large/AW_02_21_2005_800_L.jpg
No matter what its future holds, the IV Heavy flew one of the more spectacular first flights in the storied history of rocketry at Cape Canaveral. And the pictures here show some unusual characteristics of the vehicle.
The Delta IV is the only launch vehicle that, by design, sets itself on fire during its ignition sequence (see next photo).
http://www.aviationnow.com/media/images/awst_images/large/AW_02_21_2005_805_L.jpg
Thousands of pounds of hydrogen are dumped through the vehicle's three RS-68 engines to condition their internal temperatures 5 sec. before oxygen valves are opened for ignition.
The hydrogen forms a cloud around the vehicle that is burned off by Pad 37 spark generators to avoid an explosive hazard. This causes a huge ball of fire that blackens the core and the 125-ft. liquid strap-on boosters.
During climbout, free hydrogen continues to attach itself to the base of the vehicle, where it burns on insulation designed for that purpose. So while the fire is inconsequential, parts of the boattail remain ablaze until ascent into thinner air (see photo p. 51).
http://www.aviationnow.com/media/images/awst_images/large/AW_02_21_2005_802_L.jpg
Heat emerging from RS-68 fuel turbine exhausts for roll control can also cause flame on the insulation as with the center engine just after liftoff (see right photo). All of this looks frightening, but is normal.
http://www.aviationnow.com/media/images/awst_images/large/AW_02_21_2005_804_L.jpg
The overall initial flight test was a success, but Boeing and the U.S. Air Force continue to examine ways to work around a liquid oxygen propellant line bubbling characteristic discovered during the last seconds of the strap-on and core propulsion phases.
The phenomenon tricked measurement sensors in the liquid strap-ons and core to command shutdowns of the three RS-68s about 8 sec. prematurely.
That resulted in the low orbit for a 6.5-ton dummy payload and the loss of two 50-lb. USAF/university student microsatellites. But neither the Air Force nor Boeing believes that a fix to the characteristic will be a serious downstream problem. It was caused by a unique combination of vehicle acceleration, flight path angle and tank and line pressures, according to the Air Force.
Among the range of existing vehicles that could be selected by NASA for the exploration architecture, the Delta IV Heavy is the only new "heavy" rocket to have actually been flown.
The diversity of manned and unmanned heavy versus smaller medium launchers needed for the exploration program, however, will depend upon the outcome of initial NASA architecture studies due later in 2005. Actual booster selections will take longer.
The formal CEV request for proposals NASA is to issue in early March will call for a four-person CEV launch mass no greater than 20 metric tons (44,000 lb.). In comparison, the earlier three-person Apollo Command/Service module needed for Earth orbit and lunar missions had a launch weight of about 67,000 lb. topped by an 8,000-lb. launch escape tower, 34 metric tons total.
The standard Delta IV Heavy, like that shown during its first flight here, would satisfy the initial 20-metric-ton CEV weight target with at least 4,000 lb. of margin to spare.
Upgraded versions of the Delta IV Medium and Lockheed Martin Atlas V medium vehicles would also be candidates for just the CEV launch portion of the new architecture, but not necessarily address the large unmanned cargos that will also need launch.
Any medium launcher options for CEV would, however, have to be equipped with more solid rocket boosters than have been flight tested on either the new Atlas or Delta vehicles. For example, the Atlas V 551/552 medium vehicle with five solids and the Delta IV Medium with six would be needed to satisfy the minimum performance required to launch the 20-metric-ton CEV.
Boeing will be adding the six-solid version to its chart to bridge the capability between its current Medium with five solids and the initial Heavy with three liquid common core boosters and no solids. The Medium designations on the option matrix relate to the diameter of the upper stage for propellant loads (4 or 5 meters) and then the number of solid motors.
Whether any of the Delta or Atlas Evolved Expendable Launch Vehicle options will be acceptable for the CEV manned role remains to be seen.
The Astronaut Office at the Johnson Space Center is not keen on any of these options (AW&ST June 14, 2004, p. 15). The astronauts have taken a position that "human rating should be designed in, not appended on." The Office is calling for an order of magnitude reduction in the risk of fatalities on ascent, and has expressed concern that an EELV--be it Delta or Atlas--may not be safe enough even with upgrades.
"Even with extensive modifications, the EELVs may never achieve a meaningfully higher success rate," the Astronaut Office assessment stated.
Upgrading EELVs "could potentially be as costly as building a new human-rated booster," said the Astronaut Office paper, and still "would place excessive burden on abort mechanisms to save the crew."
The concern in part is due to the potential for rare, but instantaneously catastrophic, failure modes inherent with solid rocket boosters on the medium options for both Atlas and Delta EELVs. Such failure modes would be difficult for an advanced health-monitoring system to catch before loss of control to separate the CEV safely.
Propulsion systems that are human-rated from the start already include the shuttle solid rocket boosters and space shuttle main engines (SSMEs) that could form a shuttle-derived vehicle--a key player in architecture studies.
Boeing is fully aware of the astronaut concerns, says Jim Harvey, who heads Boeing Launch Services development and is leading Delta IV exploration studies. "Instead of a human-rated rocket, Boeing is talking about a 'human-compatible' launch vehicle," Harvey said. And that approach, coupled with CEV escape designed in from the start, he said, would make the whole system human-rated.
Aside from its IV Medium with six solids, Boeing believes its all-liquid propulsion, with more benign failure modes than solids, argues for strong consideration of the Delta Heavy for the CEV role.
The development of health-monitoring capability for liquid engines is well underway in NASA and industry. Such systems are designed to discern if a liquid engine is close to a potential failure that would make separation of a manned CEV less of a challenge.
Upgraded Delta Heavy options do include solids as augmentation to the three RS-68s, but the options with solids would be for only unmanned cargos.
Boeing believes one benefit of using the Delta Heavy for both human or unmanned payloads is the massive Delta IV infrastructure already in place here. The facilities include a 250-ft. fixed service structure and a 330-ft. mobile service tower that can access complex payloads throughout most of a countdown. The Delta IV vehicles and infrastructure combined already represents "billions" of dollars of investment by Boeing, the company says. That infrastructure would need minimal modification to support basic CEV or unmanned exploration missions, Harvey said.
"We think that a new system like the Delta Heavy already developed with a lot of growth potential is a real benefit for the overall exploration initiative. It would make it affordable and sustainable," says Frank Slazer, director for NASA and civil space business development at Boeing Launch Services.
"WHY SHOULD THE exploration program pour money into more expensive rocket developments when something like the Delta IV Heavy and its infrastructure already exist?" Slazer asked.
It's an open question at NASA, but Lockheed Martin does not agree. It has its own Atlas V Heavy triple-barrel design. Lockheed Martin says an Atlas V Heavy could be developed within about two years of any government order.
The Atlas V Heavy would look similar to the Delta IV Heavy, but instead use Energomash/Pratt & Whitney RD-180 oxygen/kerosene engines. The Russian engines are now assembled near Moscow, but are slated for coproduction at Pratt's West Palm Beach, Fla., facility by about 2007. Like the RS-68s, the 860,000-lb.-thrust RD-180s have a 100% safety record.
But Boeing notes the Delta Heavy's 650,000-lb.-thrust RS-68s use higher energy oxygen/hydrogen propellants, are relatively simple and could also be used as an upper-stage engine for a translunar stage in exploration architectures. The RS-68 is the first new large rocket engine built in the U.S. in 25 years, and has 80% fewer parts than an SSME.
Boeing also notes that the Atlas V Heavy remains just a "paper rocket," while the Delta IV Heavy has already flown a largely successful test, and has a second launch this summer to carry a Defense Support Program missile warning satellite. Other USAF IV Heavies are slated to launch the heaviest new military satcoms and signal intelligence satellites.
The IV Heavy as flown in December has a 22-metric-ton capability to low Earth orbit that can be advanced to 25 metric tons with no hardware changes. This would be done by flying a more depressed trajectory downrange of Cape Canaveral, Harvey said.
To satisfy USAF range safety requirements for that payload increase, however, Boeing would have to gain USAF cooperation to implement new vehicle monitoring and destruct capability for depressed trajectories that would fall below the horizon of the Antigua tracking station.
Delta IV Heavy upgrade options can be mixed and matched to various exploration mission architectures. The options that can use the existing pad infrastructure include:
*New upper stages: Depending upon the upper-stage cryogenic propellant load desired, the current Heavy uses either a 4- or 5-meter-dia. upper stage with a 25,000-lb.-thrust Pratt & Whitney RL10B-2 engine.
For larger payloads, however, Pratt is well into testing its new RL60 upper-stage engine that, when mated with the Delta Heavy, can begin to push the Earth orbit capability to more than 40 metric tons.
Likewise, Boeing and Mitsubishi are examining a U.S./Japanese MB-60 with about 60,000 lb. thrust. The RS-68 first-stage engine could also be used as a translunar-stage engine, under some Boeing studies.
*Solid rocket booster additions: The addition of four ATK Thiokol GEM-60 solid rocket motors, two on either side of the core, would boost Heavy unmanned Earth orbit payload performance to more than 30 metric tons and escape payloads to 12 metric tons.
Boeing has examined other Heavy unmanned cargo options using six solids to achieve in excess of 50 metric tons to orbit. Each GEM-60 has 191,000 lb. of liftoff thrust and, by mounting them all on the same side, the vehicle can still use Pad 37 without changes.
*Propellant crossfeed: Each Common Booster Core in the current Heavy uses its own cryogenic oxygen and hydrogen tanks to feed its own RS-68. But Boeing is studying a crossfeed system that would allow oxygen and hydrogen from the strap-ons to be pumped into the core also during ascent.
By doing this, the outboards could be loaded with even more propellant than they used in December, but expend that propellant through both their own engines and the core engine. This would use that propellant more efficiently, allowing the separation of the heavy outboards earlier, while pumping enough propellant into the core to keep its RS-68 at 100% throttle throughout the ascent.
*Densified propellants: By adjusting the cryogenic temperatures and pressures of both the liquid oxygen and hydrogen, the propellants can be densified, allowing the loading of more propellant than standard liquid oxygen and hydrogen.
*Lighter weight: Boeing is eyeing use of large IV Heavy structures with aluminum-lithium alloys to save weight and boost performance. Replacing the current RS-68 ablative nozzle with a hydrogen regeneratively cooled one would also achieve those goals.
Boeing's Decatur, Ala., Delta IV manufacturing facility is also a cost benefit to future use of the vehicle because it is designed for high throughput and modern machining methods. The basic Delta IV Heavy price is about $200 million per vehicle, the USAF said, about half the cost of the Titan IVB it replaces.
Boeing has also looked at other IV Heavy derivatives that would cluster 5-7 common cores with 5-7 RS-68 first-stage engines for 85-metric-ton Earth orbit payloads and 36-ton capability to Mars.
And it has considered increasing the diameter of the clustered cores from 16.1 ft. to 23 ft. for more propellant, giving the vehicle a payload capability comparable to the 7.5-million-lb.-thrust Saturn V. But the concepts with the multiple or enlarged cores would require new pad infrastructure and are not likely for any near-term mission options.
http://commons.wikimedia.org/upload/5/5a/Delta4_family_future.png
duchetto
30-09-2005, 00:08
impressionante :eek:
Dall'epoca dell'upgrade di fine anni '80 - inizio '90 sono a cristalli liquidi in "full color". Per i computer, la documentazione ufficiale della NASA riporta(http://spaceflight.nasa.gov/shuttle/reference/shutref/orbiter/avionics/dps/gpc.html):
e' interessante notare come nel 1972 avessero gia' progettato di installare computers a 16 bits con ~200KB di memoria! :eek:
(ricordo che i personal computers a 16 bits sono arrivati dieci anni dopo.. )
@ GioFX
quindi la NASA non ha ancora deciso se utilizzare un vettore esistente (Boeing o Lockeed-Martin) o farne costruire uno che soddisfi meglio i requisiti per il CEV?
Tnx!
@ GioFX
quindi la NASA non ha ancora deciso se utilizzare un vettore esistente (Boeing o Lockeed-Martin) o farne costruire uno che soddisfi meglio i requisiti per il CEV?
Nessuno dei vettori richiesti dalla VSE è realmente esistente, anche il Delta-IV Heavy è ancora in fase sperimentale ed ha fatto un solo lancio, per'altro parzialmente riuscito.
Dubito che la NASA utilizzerà da subito vettori tipo il Delta IV, perchè è seriamente intenzionata a riutilizzare l'ET, i SSME e gli SRB dello Shuttle per i nuovi lanciatori richiesti dal programma, per diversi ovvi motivi (minor costo, possibiltà di riutilizzare gran parte del personale ingegneristico e tenico, tempi più ridotti per il passaggio dal programma STS al CEV).
Però, ovviamente, siccome la decisione non è stata ancora presa e il programma non ancora finalizzato nei suoi tempi e dettagli, sia Boeing che Loockeed sperano di poter convincere i vertici dell'agenzia e il congresso (che ha l'ultima parola sui finanziamenti dei programmi) ad utilizzare le loro soluzioni (ma non solo per il CEV, anche per eventuali missioni scientifiche e robotiche).
Nel caso del Delta IV HLLV, infatti, il solo uso da parte della US Army non giustificherebbe mai i costi di progettazione e sviluppo. O Boeing trova altri clienti o non potrà continuarne lo sviluppo.
Ma la NASA non si serve gia' di vettori piu' "piccoli" per le altre missioni robotiche? Mi pare di ricordare fosse stato usato un Atlas V per il lancio dell'MRO
Da SpaceRef.com (http://www.spaceref.com/news/viewnews.html?id=1069):
A Closer Look at NASA's New Exploration Architecture
Keith Cowing
Sunday, October 9, 2005
A group of NASA officials briefed a panel at the National Academy of Sciences last week on Administrator Mike Griffin's revamped exploration plans. The panel being briefed was part of the Academy's Space Studies Board - one organized to review NASA's plans for the International Space Station.
Some aspects of the presentations, such as the broad outlines of how NASA wants to go back to the moon, were straightforward. Other presentations - on the International Space Station and what it is now to be used for - the ones that were most relevant to the committee's purview - were far less cogent.
This article deals with the overview of the new lunar exploration architecture NASA recently announced - one developed by the ESAS (Exploration Systems Architecture Study). A future article will deal with the ISS issues that were discussed.
Such briefings are all rather routine. Whenever a government agency involved in some aspect of science, engineering, technology, or medicine changes its policies, or encounters problems, the Academy is often called upon to review the issue(s) at hand and make recommendations as to how that agency should proceed. Many times, such reviews by the Academy are specifically mandated as part of Congressional legislation.
While Mike Griffin sought to immediately truncate the extensive roadmapping actively underway when he arrived, the Academy still needs to review what NASA has produced.
After some generalized comments by Scott Pace, John Connolly presented an overview of the new launch systems and spacecraft that will be used to return American astronauts to the Moon. Much of what Connolly presented had been released with the announcement of the results of the Exploration Systems Architecture Study (ESAS). However he added new details previously not presented - and offered briefing charts which went into even greater detail.
As with any study, you need to frame some of your options with constraints. NASA loves to talk about "trade space" as the collection of options and alternatives it has available during any particular study. Adding a little structure to that trade space results in a "trade tree". Many times examples are put forth - including images of possible spacecraft which are not final - but meant to illustrate ideas and concepts under consideration. Such things are often called "notional". And of course, until such time as NASA formally releases something in final form, presentations describing a study are referred to as being "predecisional". These caveats aside, what Connolly presented gives a clear idea of what NASA wants to do.
Sizing the Hardware: Working Backwards From Mars
Connolly went into some new detail on the evolution of the Crew Exploration Vehicle (CEV). While the first destination for NASA is a return to the moon, listening to the speakers, Mars is clearly the eventual destination. Indeed, Connolly noted that the sizing of the CEV, its launcher, and the heavy launch vehicle - both developed from modified Space Shuttle hardware - was done to support eventual missions to Mars. Previous studies at NASA have pointed toward the need for a Mars ship of perhaps 200 metric tons - a vehicle assembled in orbit from perhaps two heavy launch vehicle flights.
In developing this new architecture, Connolly noted that he and his coworkers ahd become "students of history" (Apollo) and that they had enlisted the advice of space veterans such as Apollo era Deputy NASA Administrator Robert Seamans, former Apollo astronaut John Young, and former flight director Jay Greene.
In addition to the heavy launcher, the CEV itself was sized for a role in a Mars mission - with all lunar and earth orbit applications worked backward from those downstream capabilities. The CEV can carry up to 6 crew to the ISS (3 is the normal), 4 crew to the Moon, and 6 as part of a Mars mission.
New Launch Vehicles
During the year or so following the announcement of what became known as the VSE - the Vision for Space Exploration - by President Bush, a number of studies were conducted [image] which looked at a variety of launch vehicle options. Existing launch vehicles including EELVs and Shuttle derived systems were the most favored. While Shuttle derived systems started to gain an edge over expendable launch systems prior to Mike Griffin's arrival, they quickly pulled ahead when Griffin arrived at NASA.
The ESAS came up with two launch vehicles - both of which rely heavily on designs that utilize modified versions of current space shuttle systems. The architecture was designed with the notion of supporting Mars missions in the long term, lunar exploration in the mid term, and ISS support in the near term. Crew size flowed backwards from projected Mars mission needs, and the 6 month on orbit lifetime for the CEV flowed forward from ISS needs.
Two launch systems emerged: a CLV - Crew Launch Vehicle - designed to launch the CEV and a heavy lift launch vehicle designed to launch large payloads to the moon and Mars. While the functions of crew transport and cargo transport have been separated - something the Columbia Accident Investigation Board recommended, options exist for putting humans atop the heavy lift launch vehicle and using the CLV to launch unmanned cargos.
The CLV will be built using a standard 4 segment Solid Rocket Booster (SRB) currently used by the space shuttle. According to Connolly this is actually one of the safest human launch systems - one with 200 flights (two per shuttle launch) since the Challenger post-accident redesign. The SRB will have a second stage powered by one Space Shuttle Main Engine (SSME) which will be discarded whereas its first stage will be recoverable and reused as has been the case in the shuttle program.
Atop the CEV will be a launch escape system modeled after the one used on Apollo. Unlike the current shuttle system where escape modes are not available for all portions of the launch and ascent sequence, there are no "black areas" according to Connolly - the crew can escape from the launch vehicle at any point.
While the Shuttle has a 1/200 loss rate (crew and vehicle) on ascent, Connolly said that NASA has calculated the CLV/CEV system as having a 1/2000 loss rate. When asked by an astronaut on the NAS panel where these numbers came from Connolly said that the same probabilistic estimating system that was used for shuttle was used to derive the figure for the CEV/CLV. He also admitted during subsequent questioning by the panel, that this very same probabilistic estimating system gave risk estimates for the shuttle a decade earlier which have now been shown to be off by a factor of 4.
The target date for the availability of the CEV/CLV is somewhere between 2011-2012 - a year or two after the targeted retirement of the space shuttle fleet. At an employee briefing to his employees on 6 October 2005, KSC Center Director Jim Kennedy said that the public date for CEV availability is 2012 - but that Mike Griffin was pushing for 2011.
Return of the Monster Rocket
Coming online in the middle of the next decade will be the heavy launch vehicle - also based on shuttle derived hardware. This vehicle will use a modified Shuttle external tank, 5 Block II SSMEs and two 5 segment SRBs.
The second stage will two J2S engines - modified versions of Apollo's Saturn V second and third stage engines. This second stage will also function as the Earth Departure Stage - EDS - to place the hardware needed for lunar missions on its way to the moon much as the Apollo program's SIV-B stage did.
This monster will be able to place over 120 metric tons of payload into low earth orbit. Again, while this vehicle will be used to support lunar missions, its was sized such that it could loft the several 100,000+ pound elements needed to construct a Mars exploration ship.
CEV Evolution
The CEV NASA wants to build will be shaped just like the Apollo Command Module. The CEV will be a 5.5 meter diameter blunt body with a 32.5 degree side wall slope. Apollo had the same shape but was only 3.9 meters in diameter. The reasons for using the basic Apollo configuration are obvious - not only has it proven itself - but NASA will be able to mine the wealth of testing data that was used to design the Apollo Command Module as well.
While the CEV itself is deliberately derived from the general shape and ballistic performance characteristics of the Apollo Command Module, it is totally new under the hood. Think of the old VW beetle and the new one and you get the idea. China's Shenzhou - when compared to Russia's Soyuz is perhaps an even better comparison.
WHile the CEV will use aerodynamics data from 40 years ago, it will have the benefit of all the material, computing, and software advances that have been made since that time. While NASA had initially specified that the CEV be reusable - up to 10 times with a disposable heat shield, Connolly said that NASA "hopes" that it will be reusable. The level of reusability that eventually emerges will result from the actual design process itself.
Whereas former NASA Exploration head Craig Steidle's approach to CEV development used 'spirals" (a term Mike Griffin has said publicly that he "hopes never to hear again") to denote increasing levels of capability and destinations, Griffin's CEV plan includes different "blocks" of CEVs - each with a different and evolved capability. This is, of course, the term, and the approach used during the Apollo program.
The Block 1 CEV consists of 2 vehicles: a crew transfer version for ISS use (Block 1a) which could carry 3 ISS crew and 400 kg of cargo. An unmanned (but pressurized) variant for cargo (Block 1b) could transfer up to 3,500 kg to the ISS. A Block 2 CEV variant would be created to carry 4 humans on lunar missions. A Block 2 CEV variant (service Module but no Command Module) could also be used to deliver up to 6,000 kg of unpressurized cargo to the ISS.
A Block 3 CEV would be used to perform Mars missions with a crew of 6. It is likely that This vehicle would be used at the beginning and the end of the mission for crew transport and serve other purposes during the trip to and from Mars. Of course, the Mars architecture itself has yet to be specified, so the CEV role is not 100% certain at this point. However, as this plan is being worked out, it is likely that many structures and systems (propulsion) to be used in Block 1 and 2 CEV vehicles will be used around - and on - Mars.
CEV Systems Overview
In designing the CEV, Connolly spoke of a focus on improving upon the way things had been done in the 1960s. Preparing the spacecraft for launch involves the loading of propellant for reaction control (RCS) thrusters. Apollo used monomethyl hydrazine and Nitrogen tetroxide - both nasty substances. The CEV will use far more benign fuels - oxygen and ethanol thus making ground preparations - and post flight servicing less hazardous.
The CEV will have a docking system compatible with the ISS and with all other elements of lunar and eventually martian spacecraft. It will also be able to support contigency EVAs.
CEV Service Module overview
The CEV's Service Module will supply the same overall capabilities as did Apollo's. Given the need for in-space service life of up to 6 months, the CEVs Service Module will need to be far more reliable - and long-lived than Apollo's. Apollo used fuel cells to generate electricity. For the periods the CEV will be in space, fuel cells are not the optimum choice - so solar arrays will be used instead - the first time an American manned transport spacecraft has done so. The two arrays will deploy from the aft end of the Service Module and will generate 4.5 kW each.
The ECLSS/ATCS (Environmental Closed Life Support System/Active Thermal Control System) will utilize a 60% propylene glycol/40% water single phase fluid loop which will be run through four 7 m2 body-mounted radiators.
The propulsion system will utilize one 15,000 foot pound pressure-fed liquid oxygen/methane engine with an Isp of 362 seconds. The Service Module will have 24 100 lbf RCS engines - each with an Isp of 315 seconds. The fuel tanks will be AL-Li graphite wrapped, rated at 325 psia and will use gaseous Helium pressurization. The Service Module itself will feature a stringer/ring frame construction with graphite epoxy composite skin.
CEV landing - on land
The CEV will make its way back to Earth as did Apollo but it will touch down using airbags, braking rockets or some other system - and will do so on dry land. The landing site may be Edwards Air Force Base - or some other location on the U.S. west coast. West coast landings are needed so that the Service Module, which also returns to Earth (via destructive reentry) lands in the Pacific Ocean - and not the continental U.S. In addition to avoiding the need of an ocean going recovery force, dry land recovery avoids exposing the CEV to salt water - exposure which can complicate NASA's hope that the CEV will be reusable.
Lunar lander
One of the key differences is the lunar lander - the Lunar Surface Access Module (LSAM) - and its capabilities. It will carry 4 astronauts to the lunar surface and can stay there for a week. Connolly spoke of a baseline plan for two missions a year. The initial model - the one NASA is working toward right now is sortie driven - i.e. trips to and fro - but no long term stays. It is clear, however, that NASA is thinking about permanent bases as a logical outgrowth of a sortie-driven initial phase of lunar exploration.
The LSAM will be a two stage, expendable spacecraft with a general look and feel similar to the Apollo Lunar Module. The descent stage will use a liquid hydrogen/liquid oxygen fueled RL-10 derivative engine which can be throttled. This engine will be used to perform lunar orbit insertion, nodal plane change, and lunar descent. The engine will be capable of 1100 m/sec Delta V for lunar orbit insertion and 1850 m/sec for lunar descent.
The ascent stage will use the same engine as the CEV Service Module. It will be pressure fed, and will be fueled by liquid oxygen and methane. The choice of these fuels has a long range rationale: ISRU - in situ resource utilization. In the case of lunar missions, it its possible that lunar water ice deposits could be mined, and the oxygen used as to fuel LSAM return missions and perhaps life support systems as well. If this engine is used on Mars, then it is possible that both the oxygen and methane could be produced from the Martian atmosphere. Including such systems in lunar vehicles will afford NASA a chance to test out the technology close to Earth before it is deployed on Mars missions.
The LSAM will also have access to a much wider range of landing sites than did Apollo missions. While Apollo was limited to landing on the equatorial region on the near side of the moon, the LSAM can land anywhere on the moon - including the poles and its farside. It will also be designed to depart the moon on very short notice and, once the crew has docked with the CEV waiting in orbit, to return to Earth. NASA refers to these capabilities as "Global Lunar Access" and "Anytime Return". The phrase "Anytime return" can be traced back to the Apollo era when it was used in documents describing various contingency scenarios.
There is still a lot of un-assigned capacity aboard the LSAM. Just over 2,200 kg has yet to be spoken for. This payload margin could be used for science gear - or perhaps the beginnings of a permanent base. In addition, It is also possible that an unmanned variant of the lunar lander could be sent to the Moon with supplies and equipment. If the ascent stage is left off, Connolly said that up to 21 metric tons could be landed on the lunar surface.
If you look back at some of the plans NASA had for advanced Apollo missions, you will see that similar thinking was followed back then. Alas, Apollo was ended just as it was about to pass the threshold between quick sorties and true lunar expeditions.
This lunar lander will be a bit more cozy than its cramped, spartan Apollo predecessor. At Mike Griffin's insistence, there will be an airlock which allows dirty spacesuits and other items to be kept separate from the crew's quarters. Connolly noted that thought is also being given to leaving part of the crew compartment behind as part of a cached resource that could later be used for a lunar base. Such an approach is currently referred to by NASA as an "Incremental Build Approach".
Lunar Surface Activities
Connolly said that the current plan is to start off with two lunar missions per year. That frequency was derived in part from the capabilities that were assigned to the CEV i.e. the ability to function in space for up to 6 months and the launch rate that would likely be used to support the ISS. "There is nothing magic about 6 months" Connolly said. However the 6 month lifetime needed for CEVs that visit and stay at the ISS "backed its way into lunar missions."
Sorties would not depend on any pre-deployed assets and would be able to land at any location on the moon. The crew of 4 would use the LSAM as their base of operations for up to 7 days. EVAs on the lunar surface wold be conducted every day utilizing all crew members. The crew could either act as one large team or as two separate teams simultaneously.
To get around the lunar surface two rovers would be brought with the LSAM to allow separate, simultaneous sorties on the lunar surface. The rovers would allow the crew to go 15-20 km from the landing site.
Sorties missions would focus on three activities: lunar science (geology, geophysics, astronomy, Earth observations,and astrobiology); resource identification and utilization (lunar water); and "Mars-forward technology": demonstrations including autonomous operations, partial gravity systems, advanced spacesuits, and overall operations.
Candidate Lunar Outpost Locations
While no formal plans for a lunar base have been baselined by NASA as part of the ESAS, Connolly did speak of a general concept that everyone has been working toward- a base located at the Moon's south pole where possible water ice deposits and plentiful solar energy are possible resources that could be tapped.
The advantages of the lunar south pole have to do with resources that are known - or expected - to be located there. Elevated amounts of hydrogen detected at the south pole in locations such as Shakleton crater may be indicative of water ice which can be used for life support and fuel production.
Due to the location on the moon's surface, the poles offer long periods of extended solar illumination which are not available over most of the lunar surface. Depending on the exact location and the local topography, illumination can range from 80% with the longest period of darkness being 50 hours to 70% illumination with longest dark periods ranging from 140-188 hours.
There are some disadvantages - the terrain is undulating, the shadowed regions inside the craters can reach -223C, the sun is low in the sky casting long shadows, and there is no constant line of sight communications with earth. All of these factors would need to be factored into how the base was constructed and operated.
Before serious planning can commence, additional data will be needed. NASA is looking to its Robotic Lunar Exploration Program (RLEP) to answer the open issues that remain with regard to placing a base at the south pole of the Moon.
Outpost Deployment Strategy
Assuming that the South Pole is characterized to the extent needed to answer lingering questions, NASA is looking to implement the development of a lunar outpost in a sequential fashion. According to Connolly, development of a lunar outpost is "an extension of sortie missions"
According to a presentation Connolly provided to the panel, the first items to be landed would be a power system and the essential backbone of a communications and navigation system. This would be followed on subsequent flights by landing habitat modules, logistics, and ISRU (in situ resource utilization) hardware. Once landed, these items would be assembled and plugged into the power and communication/navigation systems that were landed on the first flight. These operations would likely be done with automated or teleoperated systems.
The next step wold be for an un-crewed, LSAM - with a fueled ascent stage - to be landed at the nascent base prior to the first crew's arrival. This is a safety and operational redundancy provision that would allow for the presence of two, fueled ascent stages during crew rotations at the base.
In planning this outpost, NASA has been incorporating a number of design principles. First, once things have been landed, they should not need to be moved on the surface unless absolutely necessary. Landing things at the outpost needs to be done with a common cargo descent stage. Autonomous activities such as walking around and interacting with payloads, should only be performed if absolutely necessary. When the crew is required to deploy elements of the outpost, the tasks should be limited and simple. Common functions such as power distribution, should be performed in a common, uniform fashion. When logistics are delivered, minimal crew time - and robotic manipulation - should be required.
Developing the overall architecture.
According to Connolly , much of what is featured in this new architecture clearly reflects NASA's interest in building up to the capability of mounting human missions to Mars. The large heavy lift shuttle derived booster, the 6 person CEV, ISRU fueled vehicles are examples of deliberate Mars mission sizing. However focused things are on a Mars endpoint, Connolly said that no specific Mars mission architecture was developed as part of the ESAS.
According to a presentation Connolly provided to the panel, with regard to the mission architecture, this trade tree included: Deep space staging locations (places where docking and assembly could occur) - use none, Lagrange points, low lunar orbit (LLO), and the lunar surface. Earth-orbital staging points included using none, low Earth orbit (LEO), the ISS, and high Earth orbit (HEO). As far as lunar landing options, equatorial only, polar, mid-latitude, and far side were options. And as far as abort or contingency strategies to be considered, an "anytime return" with orbital loitering and surface loitering (i.e. being able to wait a certain period of time before returning to Earth) were available as options.
Equal in weight to the mission architecture was the surface architecture i.e. what would be done after arrival on the lunar surface. How you get there and what you do once you get there need to be well coordinated such that one aspect does not unduly drive the other. The questions asked were "what is the content of the science, resource utilization, and Mars-forward technology demonstrations and operational tests? Where are the highest priority sites? and DO he scope of activities require a permanent outpost, and if so, how is it configured and how is it deployed?
A variety of options were developed- many very reminiscent of Apollo's early trade studies. Direct ascent and landing i.e. using one launch - with no docking to send a ship to them moon and then back again was ruled out due to the enormous size of the vehicle required - and the immense booster needed to loft it. Launching everything on a Saturn-V class vehicle ala Apollo was also eliminated. Although some studies looked at putting humans on a heavy lift launcher, the development of a CEV-specific launcher kept the lunar payloads on two launch vehicles.
What resulted was a 'dual rendezvous" model which requires two launches - CEV and LSAM/EDS which link up in Earth orbit. After that, the old Apollo plan takes over. Some earlier NASA studies had spoke of using Lagrange points in the Earth-Moon system as possible staging/docking points. That option was eliminated based on ESMD studies done in FY 2004 and 2005.
More Than Just Flags and Footprints?
The issue of what drives what NASA wants to do on the moon and elsewhere as part of the VSE. Mike Griffin, of course, responds simplistically by saying something along the lines of "the President said so". While, of course, that is quite true, John Connolly did present three overriding reasons for going back to the moon: science that can be done there; learning how to extract local resources and use them; and using the moon to test operations, procedures, and technology so as to better equip missions to Mars.
When people are critical of the ESAS architecture, they don't get into the specifics - but rather point to a lack of clear scientific reasons why humans should be going back to the moon. Going there for the sake of going (back) there (again) - regardless of who said so - is not enough for many people - especially when war and hurricane costs compete for scarce budget resources. According to Connolly, when the final ESAS report is issued it will have "a large section on what we will do on the moon. We realized that we can't just focus on transportation."
This architecture has been out in the public view for a month or so. The media has already had its way with its initial presentation. Congress will soon weigh in on whether they think it is the right thing to do, whether it is supportable, and whether they will sign on to support it. There is some valid skepticism on the financial aspects of how Mike Griffin wants to pull this off. However, based on the technical aspects of the architecture itself, while it is more bare bones than many would have liked to see, it is a frugal, well thought out way to pick up where Apollo left off - and then move ahead with the personal exploration of the world closest to our own. Hopefully, if NASA is able to pull it off, it will both restore the confidence in NASA's ability to mount large space projects and hopefully whet the appetite of a new generation for the personal exploration of planets beyond - i.e. Mars.
uC.ArTaX
15-10-2005, 15:23
Ciao a tutti!
Ho scoperto questo thread solo ora e vorrei fare delle domande e aprire degli spunti di discussione:
- un fisico italiano (mi pare Rubbia) aveva proposto l'idea di un sistema di propulsione nucleare che utilizza l'Americio (o un suo isotopo), in grado di liberare (credo durante il suo decadimento) una gran quantità di particelle per unità di massa. Inoltre è un sottoprodotto della fissione (costo = gratis).. dite che è tutta una bufala o sarebbe un'idea da tenere in conto?
- ho letto che anche l'Esa (+Russia) voglia in futuro provare a "conquistare" Marte e per i vettori la Russia ha ottime capacità (le mancano i soldi ma non l'esperienza), tant'è che vogliono rispolverare il mega vettore energhija (spero si scriva così) quello usato nel primo e unico volo del Buran.
- A proposito di Buran, pensate che gli scienzati russi non volevano nemmeno farlo, erano più inclini a qualcosa simil-CEV del futuro... In ogni caso per me aveva dei (seppur piccoli) vantaggi rispetto al suo genitore americano, tra cui il più grande è la mancanza di una propulsione terrestre propria (per il decollo, i SSME dello shuttle) in favore di un razzo completamente riutilizzabile (a me personalmente suona strano). Contate che negli ultimi 2 voli (1 disastro e un rientro con ansia) il problema è stato dato dal distacco di pezzi dell' ET...
- Inoltre un altro problema degli orbiter o di navette in grado di atterrare planando è senza dubbio il rientro nell'atmosfera, fino a che non si troveranno alternative o migliorie alle piastrelle termiche (lo scudo termico attualmente è troppo fragile) il completo e sicuro riutilizzo è utopia...
Ciao a tutti!
Ho scoperto questo thread solo ora e vorrei fare delle domande e aprire degli spunti di discussione
Ciao, vorrei solo invitare a non utilizzare questo thread per altre discussioni, ti invito a utilizzare le discussioni già aperte che puoi trovare qui (http://forum.hwupgrade.it/showthread.php?s=&threadid=851766)... ;)
Per ora mi limito a risponderti brevemente:
- ho letto che anche l'Esa (+Russia) voglia in futuro provare a "conquistare" Marte e per i vettori la Russia ha ottime capacità (le mancano i soldi ma non l'esperienza), tant'è che vogliono rispolverare il mega vettore energhija (spero si scriva così) quello usato nel primo e unico volo del Buran.
La RKA russa sta già lavorando al nuovo programma spaziale in sostituzione della Soyuz, e per questo ha incaricato la RKK Energia (http://www.energia.ru/english/index.html) di progettare il Kliper (http://www.russianspaceweb.com/kliper.html), per il quale rimando a questo (http://www.hwupgrade.it/forum/showthread.php?p=9551721) thread.
L'ESA deciderà al prossimo Consiglio dei Ministri di dicembre se partecipare al progetto assieme ai russi, integrandolo con il proprio programma di esplorazione spaziale, Aurora.
Ma attualmente il Kliper non è previsto che utilizzi il lanciatore espandibile Energia (http://www.astronautix.com/lvfam/energia.htm) (si legge Energhia), del quale attualmente sopravvivono solo i potentissimi motori a propellente liquido RD-0120 (http://www.astronautix.com/engines/rd0120.htm) (il più potente del mondo assieme al SSME dello Shuttle).
- A proposito di Buran, pensate che gli scienzati russi non volevano nemmeno farlo, erano più inclini a qualcosa simil-CEV del futuro... In ogni caso per me aveva dei (seppur piccoli) vantaggi rispetto al suo genitore americano, tra cui il più grande è la mancanza di una propulsione terrestre propria (per il decollo, i SSME dello shuttle) in favore di un razzo completamente riutilizzabile (a me personalmente suona strano). Contate che negli ultimi 2 voli (1 disastro e un rientro con ansia) il problema è stato dato dal distacco di pezzi dell' ET...
Il Buran aveva grandi vantaggi rispetto allo Shuttle, semplicemente perchè i russi sono partiti dal progetto dello Shuttle e l'hanno migliorato. Era più leggero, non avendo motori propri (a causa del fatto che avrebbe richiesto molto più tempo il progetto di motori criogenici che fossero anche riutilizzabili), quindi più capiente (30 tonnellate) e, soprattutto, in grado di volare autonomamente.
Per informazioni dettagliate sul Buran, vedasi:
- http://www.k26.com/buran/Info/Timeline/_72-82/buran-energia_history_timline_.html
- http://www.astronautix.com/craft/buran.htm
- http://www.russianspaceweb.com/buran.html
- Inoltre un altro problema degli orbiter o di navette in grado di atterrare planando è senza dubbio il rientro nell'atmosfera, fino a che non si troveranno alternative o migliorie alle piastrelle termiche (lo scudo termico attualmente è troppo fragile) il completo e sicuro riutilizzo è utopia...
No, il punto è che un sistema "winged" è del tutto inutile per utilizzi al di fuori dell'orbita bassa terrestre e il punto debole di tali sistemi non è tanto il rivestimento termico, quando il pericolo costante del distacco di pezzi di materiale isolante dal vettore (o, nel caso dello shuttle, dell'ET) a causa del fatto che tali sistemi sono montati fuori asse rispetto al sistema nel suo insieme.
I lavori per il CEV sono cominciati (anche se si tratta solo di prototipi ;) ):
da nasa.gov (http://www.nasa.gov/missions/solarsystem/cev_mockup.html):
Mockup Provides Early Glimpse of New Exploration Vehicle
11.17.05
As NASA's next generation spacecraft matures, engineers will document its design with today's electronic equivalent to the blueprint. But diagrams, three-dimensional or not, only go so far in helping engineers understand what layouts best suit the job at hand and the humans involved.
CEV mockup Image to right: A mockup of NASA's new spacecraft comes together. Credit: NASA
That's why Johnson Space Center in Houston has started building a full-sized mockup of the new craft's cockpit in its Space Vehicle Mockup Facility.
The new spaceship -- known as the Crew Exploration Vehicle -- is the key to making NASA's Vision for Space Exploration a reality. A quick glance at the mockup reveals the resemblance to the original Apollo crew capsule. But the new capsule will be three times larger and is designed to carry four astronauts to and from the Moon, support up to six crewmembers on future missions to Mars and deliver crew and supplies to the International Space Station.
Inside, the mockup remains largely unfinished. A temporary floor foreshadows the location for launch and entry seating, and a large hatch dominates the top of the cone. The hatch is wide enough for a human to pass through easily and will be the point where the crew capsule will dock with a lunar lander for the first trip back to the Moon, currently targeted for 2018.
The mockup represents the first leg of a three-step design philosophy. In stage one, design teams discuss various theories over how best to utilize cockpit space and commit their ideas to paper. Then engineers use computer design programs to produce working 3-D models of the crew’s space. While work continues on these stages, team members simultaneously use the mockup to experiment with physical relationships in a real-world environment.
"You discover new things during each stage of the design process," said Jeff Fox, lead cockpit engineer on the spacecraft. "But your brain needs the input of physically standing inside the real volume of the interior space to get a true feeling of what should be the right layout."
CEV mockup Image to left: Workers attend to the details in building the mockup of NASA's new spacecraft concept. Credit: NASA
Workers are making changes to ensure the current model matches the inner measurements of the most recent design. Once that's finished, the team will start working on how to arrange seats and where to put the spacecraft's controls.
The team is already working on plans to arrange cockpit seating in three-, four- and six-person configurations. In the early phases, simple foam-core boxes will serve as substitutes for real-world hardware such as computers and cargo.
The stand-ins will gradually give way to more accurate versions of the real thing, helping the designers visualize what the computers can't show. As Fox puts it, "there’s just no substitute for reality."
I lavori per il CEV sono cominciati (anche se si tratta solo di prototipi ;) ):
da nasa.gov (http://www.nasa.gov/missions/solarsystem/cev_mockup.html):
Mi intrometto in questa discussione per postare una mia riflessione: chi di voi legge Le Scienze avrà notato che sul numero di novembre la rubrica Cronache dallo Spazio, tenuta dal prof. Bignami, ha un tono piuttosto critico nei confronti del progetto CEV, giudicandolo (vado a memoria, potrei sbagliarmi) tutto sommato inutile e dispendioso, tale da distogliere definitivamente l'interesse dall'esplorazione spaziale una volta che fossero stati spesi gli (ingenti) denari necessaria tornare sulla Luna, proprio nel momento in cui il programma dovrebbe spiccare il volo verso il lido più lontano (Marte).
Inoltre sembra che si voglia attribuire la volontà del progetto all'idea di "salvare" la ISS portandola ad un (sebbene parziale) completamento, più per la volontò di non ammetere il mezzo fallimento del progetto complessivo che per la speranza di ricavare ancora "scienza utile" dalla stazione stessa.
Il professore sembra suggerire, in alternativa a questo progetto, che l'impegno si concentri su sistemi di propulsione alternativa che, immagino, potrebbero diminuire drasticamente il round-trip time verso il pianeta Rosso e quindi risolvere in un colpo solo tutti i problemi legati alla durata della missione che comunque, anche col miglior CEV, resta piuttosto elevata.
Devo dire che l'articolo mi ha lasciato confuso, generando in me sentimenti contrastanti: da una parte plaudo all'idea di concentrarsi su propulsioni "veramente" alternative in grado di cambiare significativamente i tempi dell'esplorazione spaziale; dall'altro, mi è chiaro che senza un impegno costante quanto faticosamente costruito dall'industria aerospaziale nel corso degli anni 50-60-70 in termini di conoscenza pratica del "terreno" di esplorazione andrà facilmente disperso.
Voi che ne pensate?
Mi intrometto in questa discussione per postare una mia riflessione: chi di voi legge Le Scienze avrà notato che sul numero di novembre la rubrica Cronache dallo Spazio, tenuta dal prof. Bignami, ha un tono piuttosto critico nei confronti del progetto CEV, giudicandolo (vado a memoria, potrei sbagliarmi) tutto sommato inutile e dispendioso, tale da distogliere definitivamente l'interesse dall'esplorazione spaziale una volta che fossero stati spesi gli (ingenti) denari necessaria tornare sulla Luna, proprio nel momento in cui il programma dovrebbe spiccare il volo verso il lido più lontano (Marte).
Inoltre sembra che si voglia attribuire la volontà del progetto all'idea di "salvare" la ISS portandola ad un (sebbene parziale) completamento, più per la volontò di non ammetere il mezzo fallimento del progetto complessivo che per la speranza di ricavare ancora "scienza utile" dalla stazione stessa.
Il professore sembra suggerire, in alternativa a questo progetto, che l'impegno si concentri su sistemi di propulsione alternativa che, immagino, potrebbero diminuire drasticamente il round-trip time verso il pianeta Rosso e quindi risolvere in un colpo solo tutti i problemi legati alla durata della missione che comunque, anche col miglior CEV, resta piuttosto elevata.
Devo dire che l'articolo mi ha lasciato confuso, generando in me sentimenti contrastanti: da una parte plaudo all'idea di concentrarsi su propulsioni "veramente" alternative in grado di cambiare significativamente i tempi dell'esplorazione spaziale; dall'altro, mi è chiaro che senza un impegno costante quanto faticosamente costruito dall'industria aerospaziale nel corso degli anni 50-60-70 in termini di conoscenza pratica del "terreno" di esplorazione andrà facilmente disperso.
Voi che ne pensate?
Che se l'articolo dice veramente questo è assai poco corretto ed informato, seppur apprezzando spesso la preparazione di Bignami, per questo mi stupisce...
Nell'ordine:
1. Il progetto VSE-CEV è indipendente dal completamento della ISS e sostituirà il programma STS al termine di questo previsto entro e non oltre l'anno fiscale 2010.
2. Sebbene non indispensabile è al momento impossibile sviluppare un programma spaziale per l'esplorazione umana di Marte senza prima tornare sulla Luna e testare mezzi, tecniche e strumenti necessari alle future missioni umane su marte, che non saranno cmq possibili se non dopo altre diverse missioni scientifiche strumentali (con utilizzo di nuovi rovers). Il progetto della NASA, ma anche quello dell'RSA, CNSA e dell'ESA prevedono prima la creazione di una base lunare permamente.
3. Il sistema scelto per il CEV (SDLV, Shuttle-derived Launch Veichle) è quello che garantisce il minor tempo di sviluppo al minor costo, grazie al riutilizzo di personale specializzato (degli attuali contractors, a cominciare dall'USA - United Space Alliance, ecc.), e di hardware del programma STS, per primis l'ET e gli SRB.
4. L'attuale programma della NASA prevede, anche per assolvere agli obblighi nei confronti dei partner stranieri come da contratto, il completamento della ISS nella configurazione attualmente prevista, con il solo punto interrogativo sulla Cupola e su altri pezzi minori. Attualmente l'agenzia americana sta per approvare il manifest definitivo delle missioni shuttle per completare l'ISS con le sole missioni che richiedono necessariamente l'uso dello shuttle, "travasando" su altri sistemi, con il russo Progress, l'europeo ATV e il giapponese HTV, il lancio di hardware minore e di quasi tutte le missioni logistiche.
Per questo la prossima missione, l'STS-121, la seconda e ultima di test per il programma del Return To Flight, sarà anche l'ultima esclusivamente logistica, con il modulo MPLM (che funge da cargo). Tutte le altre (in principio 29, poi scese a 19 ed ora pare a 16), saranno di assemblaggio.
In ogni caso la NASA dovrà utilizzare lo shuttle per portare in orbita tutto l'hardware già pronto (spesso da parecchi mesi) che non può essere lanciato se non con lo shuttle (per ovvi motivi di dimensione e peso), a cominciare dai moduli europeo (Columbus) e giapponese, oltre ai mancanti segmenti P3-P4-P5, S3-S4-S5-S6 e il Node 2 (che completano la parte di competenza americana), ecc.
Il manifest lo puoi trovare a questo link:
http://spaceflight.nasa.gov/shuttle/future/index.html
tenere ad ogni modo conto che esso è assolutamente provvisorio e che la NASA cerchera di ridurlo al massimo per risparmiare e trasferire i fondi al programma CEV per accelerarne lo sviluppo e la messa in esercizio.
PS: le 19 missioni attualmente previste sono 18 dedicate al completamento dell'ISS e 1 all'ultima servicing mission dell'Hubble (HSM), prevista per il 2010 e al quale l'amministratore della NASA, Griffin, tiene particolarmente (al contrario del predecessore).
da www.spaceflightnow.com
Ron Dittemore, president of ATK Thiokol Propulsion of Brigham City, Utah, and a former space shuttle program manager for NASA, told CBS News Wednesday details of the eventual contract are still being worked out, including what sort of test flights might be required. But he said the company could be ready for an unmanned test launch, using a modified "single-stick" shuttle booster and a dummy upper stage, before the end of 2008.
http://www.spaceflightnow.com/news/n0512/08clv/clv.jpg
l'articolo completo:
http://www.spaceflightnow.com/news/n0512/08clv/
da www.spaceflightnow.com (http://www.spaceflightnow.com)
Sixty-six wind tunnel tests were conducted on a 16.5-inch scale model of the vehicle. The tunnel is 48 inches long with a 14-inch by 14-inch cross section. Wind tunnel "flights" are used to assess new geometric configurations before designs are incorporated into space vehicles.[...]
l'articolo completo:
http://www.spaceflightnow.com/news/n0602/14clvtests/
Da spaceflightnow:
Lockheed plan would assemble, test CEV in Florida
LOCKHEED MARTIN NEWS RELEASE
Posted: February 22, 2006
Lockheed Martin announced today, in partnership with the State of Florida, its plans to locate final assembly and testing of the Crew Exploration Vehicle (CEV) in Florida if the corporation is successful in its bid to provide the next generation crew transportation system for the National Aeronautics and Space Administration (NASA).
http://www.spaceflightnow.com/news/n0602/22cev/cev.jpg
il resto dell'articolo:
http://www.spaceflightnow.com/news/n0602/22cev/
CEV RCS and Solar Panel Canfield joint proposal video:
http://forum.nasaspaceflight.com/forums/thread-view.asp?tid=1201&start=1
PS: è necessario registrarsi...
NASA Chooses Engine for New Moon Rocket
http://www.nasa.gov/mission_pages/exploration/main/index.html
Del sistema shuttle sembra restera' davvero poco..
Io forse non ho le idee ben chiare ma mi pare di aver capito che il progetto CEV ha assunto il nome di Constellation.
http://www.nasa.gov/externalflash/constellation_front/images/lt_panel.jpg http://www.nasa.gov/externalflash/constellation_front/images/rt_panel.jpg
sono disponibili inoltre nuove immagini per quanto riguarda i vettori di lancio cargo ed equipaggio.
http://www.nasa.gov/images/content/123027main8_rockets.jpg
i links:
http://www.nasa.gov/mission_pages/exploration/spacecraft/index.html
http://www.nasa.gov/mission_pages/exploration/spacecraft/work_assign.html
CEV è il nome del progetto per il modulo splorativo, mentre Project Constellation è il nuovo nome del progetto complessivo (che dovrebbe sostituire il nome ufficioso utilzzato fino ad ora, ESAS: Exploration Systems Architecture Study).
;)
Ares: NASA's New Rockets Get Name
NASA announced on Friday the names of the next generation of launch vehicles that will return humans to the moon and later take them to Mars and other destinations. The crew launch vehicle will be called Ares I, and the cargo launch vehicle will be known as Ares V.
http://www.nasa.gov/images/content/151365main_ares_rockets.jpg
"It's appropriate that we named these vehicles Ares, which is a pseudonym for Mars," said Scott Horowitz, associate administrator for NASA's Exploration Systems Mission Directorate, Washington. "We honor the past with the number designations and salute the future with a name that resonates with NASA's exploration mission."
The "I and V" designations pay homage to the Apollo program's Saturn I and Saturn V rockets, the first large U.S. space vehicles conceived and developed specifically for human spaceflight.
The crew exploration vehicle, which will succeed the space shuttle as NASA's spacecraft for human space exploration, will be named later. This vehicle will be carried into space by Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on Apollo's second stage will power the crew exploration vehicle's second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit.
Ares V, a heavy lift launch vehicle, will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle's external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars.
Ilpolitico
02-07-2006, 08:57
ma perchè la nasa non fa come i cinesi? :D ossia chiede la tech alla russia?
La russia possiede in museo(non ha soldi per utilizzarlo) un razzo vettore riutilizzabile nvolte con una potenza di carico assuruda! il razzo vettore Energia fino a 100T di portata. La stessa russia possiede uno space shuttel made casa loro, BURAN. Ai tempi era nettamente superiore, lanciato 1 volta.. sempre per motivi economici. Che peccato! Ad ogni modo lo sta reciclando la cina :fagiano:
Qualcuno di voi sa niente se poi l'esa ha deciso di portare avanti il progetto HERMES?
ma perchè la nasa non fa come i cinesi? :D ossia chiede la tech alla russia?
ehm, i cinesi non utilizzano tecnologia russa da anni, i vettori lunga marcia e lunga marcia II sono totalmente di progettazione e costruzione cinese. Anche la capsula Shenzen, seppur derivata progettualmente dalla Soyuz, è tutta cinese.
La russia possiede in museo(non ha soldi per utilizzarlo) un razzo vettore riutilizzabile nvolte con una potenza di carico assuruda! il razzo vettore Energia fino a 100T di portata.
No, la Russia non possiede in museo l'Energia LV, non ne esistono esemplari completi ad oggi. L'unico completo (e cmq un mock) è andato distrutto assieme all'unico orbiter in grado di volare (11F35 K1, "Buran", o semplicemente 1.01) nell'hangar di Baikonur nell'inverno del 2002, uccidendo pure 8 lavoratori.
Ad ogni modo il progetto è di proprietà dell'Energia Corp. (SP Korolev Rocket and Space Corporation Energia, oppure RKK Energia) mentre tutto l'hardware e le infrastrutture del programma a Baikonur sono di proprietà del governo del Kazakhstan.
La stessa russia possiede uno space shuttel made casa loro, BURAN. Ai tempi era nettamente superiore, lanciato 1 volta.. sempre per motivi economici. Che peccato! Ad ogni modo lo sta reciclando la cina :fagiano:
C'era una dicussione specifica sul Buran una volta... cmq sia il programma Buran è morto, inutilizzabile, il progetto è si della russa NPO Molnija ma l'hardware rimasto (per'altro tutto inutilizzabile) appartiene ormai al Kazakistan come da accordi del 1999.
E cmq no, la Cina non sta riclando nulla del programma "Buran".
Qualcuno di voi sa niente se poi l'esa ha deciso di portare avanti il progetto HERMES?
E' morto tempo fa.
Oggi all'interno del programma di esplorazione Aurora, l'ESA sta collaborando con la Federazione Russa per partecipare in parte al nuovo sistema russo di trasporto di astronauti in orbita terrestre e sulla Luna, il Kiper. Tuttavia l'ESA ha dichiarato che preferisce la versione non-winged del Kliper.
Si possono osservare le due versioni nella pagina dedicata al Kliper sul sito della Molnija:
http://www.buran.ru/htm/cliper.htm
Io sinceramente sono contro le missioni umane nello spazio.
Perchè per motivi di sicurezza vengono a costare una barcata in più.
E la sicurezza sarà sempre solo teorica, perchè nella realtà basta che qualcosina vada storto e state tranquilli che al primo astronauta che schiatterà in missione verso la luna/marte verranno tagliati un botto di soldi alle missioni.
Io sono a favore esclusivamente per le missioni fatte con robot, anche perchè credo che i robot abbiano incredibili margini di miglioramento e le le tecnologie per migliorarli potrebbero avere ampi effetti positivi anche sulla nostra vita di tutti i giorni.
ma, da quello che mi pare di capire guardando il link di Gio, il Kliper sfrutta sempre lo stesso concetto dei lifting-bodies per la discesa dell'orbiter.
Giusto?
ma, da quello che mi pare di capire guardando il link di Gio, il Kliper sfrutta sempre lo stesso concetto dei lifting-bodies per la discesa dell'orbiter.
Giusto?
si, una delle due versioni è propio un lifting-body... l'altra è una via di mezzo, ma più una capsula che altro (non è disponibile ancora un rendering della versione dell'ESA).
Fonte: Nasaspaceflight.com.
NASA sets targets for new Ares infrastructure
By Chris Bergin, 7/14/2006 5:12:00 PM
April of next year has been set as the handover date for Launch Complex 39B from Shuttle operations to CLV (Crew Launch Vehicle) recommisioning, in the first step of Kennedy Space Center's transition back to a moon port.
However, it'll come at a price, with brand new "lightweight" MLPs (Mobile Launch Platforms) and infrastructure, plus up to four test flights in the 2009 through 2010 time frame, before Ares I launches on its debut manned mission, now officially scheduled for 2012.
The Vision for Space Exploration (VSE) remains a fluid goal, with dissenting opinion continues behind the scenes on the 'stick' concept. However, the timeline of bringing together the elements required is starting to come to fruition.
Shuttle operations on Pad 39B - first used as an Apollo launch pad in 1969 and as a Shuttle pad in 1986 - will cease on March 31, 2007, with all remaining STS flights utilising Pad 39A - which is currently undergoing an overhaul that is expected to last for another six months.
The confirmation of 39B is yet to be made official by NASA, although sources note the decision has taken place, ruling out Launch Complex 40 - which was the other frontrunner for CLV operations.
Initially, LC 39B will see the dismantling of its RSS (Rotating Service Structure). Funding for the design and modification of the pad will come into effect around August, 2007, involving the modification of the FSS (Fixed Service Structure).
Up to four test flights will take place prior to the pad being fully modified for Ares I operations. The test flights will utilise a the current four segment SRB (Solid Rocket Booster), with a dummy second stage.
While the existing FSS is tall enough for the test flights, the LOX Vent Arm and the Crew Access Arm will also be modified to access the interstage and SRB electronics respectively. Full modifications on the pad for the Ares I vehicle will be staged during the test flights. The current FSS will then be removed after the last test flight.
Overall, initial design phase is expected to last nine months, with fabrication, demolition, construction, modifications and testing expected to take another 15 to 18 months. The goal is to have the pad ready for flight hardware evaluations by the end of 2008, with the first test flight to launch from the pad a year later.
NASA's goal is to have LC 39B ready to start testing with real test flight hardware no later than the end of 2008. Each of the three or four test flights will happen four months apart.
One major change that'll have to occur is the construction of new MLPs (Mobile Launch Platforms) for Ares I - with one of the Shuttle MLPs being handed over for use in the test flights. This handover is expected to happen in October, 2007.
This MLP will require only a slight amount of modification, utilising the left hole currently used by the left SRB of the Shuttle stack for the test flights of the four seg CLV test vehicle. However, for Ares I, a new, lightweight MLPs will be necessary. The current MLPs are simply too heavy for combination of all the weight associated with the Ares I, inadequate by around one and a half million pounds for the crawler/transporters.
The MLPs used for the Shuttle program have a weight of about eight and a half million pounds in their Shuttle configuration. Add on the 4 million pounds the new LUT (Launch Umbilical Tower) will weigh, plus a fully loaded solid fuelled vehicle and other elements that will require carrying to the pad - means the crawlers would not be able to carry the load.
To get around this problem, NASA will build new MLPs for Ares I, which have a different appearance to the current MLPs by way of their shape and steel beams that will replace large parts of the current 'box' platform.
The existing MLPs will still live on, ready to be utilised by the Ares V (CaLV) heavy cargo vehicle. Whilst also requiring modification, the ARES V stack - along with the MLP/LUT - is expected to be pushing in excess of 15 million pounds in weight. For this, NASA will build two new super-sized crawler/transporters, using all three of the existing MLPs.
Come come? il crawler attuale non potra' portare l'Ares I ?? ma se e' uno sputo in confronto ai razzi Saturno per i quali e' stato progettato*.
*Pero' potra' portare l'Ares V (il super-cargo).. :rolleyes:
Non ci capisco piu' molto.. :rolleyes:
è semplice, per i primi test sarà utilizzato un prototipo dell'Ares I con configurazione a 4 stati (esattamente l'attuale SRB). Per questi test verrà utilizzata una delle 3 piattaforme di lancio (MLP) attualmente utilizzate per il programma STS (costruite negli anni '60 per il programma Apollo).
Ma per i test con la versione definitiva dell'Ares a 5 stadi e con in più la nuova LUT (Launch Umbilical Tower) che è necessaria per questo tipo di configurazioni, come con il Saturn I e V del programma Apollo, il peso eccederebbe il carico massimo trasportabile dagli attuali crawlers per cui ne verranno costruiti due nuovi (ed al passo con i tempi, gli attuali costano sempre di più come manutenzione).
Contemporaneamente verranno costruite due nuove piattaforme più leggere che ospiteranno anche le nuove LUT. Tutto qua. :)
Ok, avevo inteso esattamente l'inverso:
Ares V: crawler attuale
Ares I: crawler nuovo (per eccesso di peso)
:fagiano:
No, la Russia non possiede in museo l'Energia LV, non ne esistono esemplari completi ad oggi. L'unico completo (e cmq un mock) è andato distrutto assieme all'unico orbiter in grado di volare (11F35 K1, "Buran", o semplicemente 1.01) nell'hangar di Baikonur nell'inverno del 2002, uccidendo pure 8 lavoratori.
Non lo sapevo... hai qualche link su cosa è successo?
Ok, avevo inteso esattamente l'inverso:
Ares V: crawler attuale
Ares I: crawler nuovo (per eccesso di peso)
:fagiano:
più precisamente:
gli attuali c-t saranno sostituiti un pò alla volta dai nuovi, nel frattempo saranno utilizzati i nuovi almeno per i testi statici e dinamici di Ares I in configurazione a 4 stadi ma con la vecchia piattaforma + la nuova LUT.
USSR Shuttle (Buran) | US Shuttle (Challenger)
http://www.ninfinger.org/~sven/models/vault/Buran/Buran%20vs%20shuttle%20large.jpg
Buran nell'hangar:
http://www.buran.ru/images/jpg/bbur152.jpg
Buran prima del crollo:
http://www.aerospaceweb.org/question/spacecraft/buran/buran-storage.jpg
Buran dopo il crollo:
http://www.aerospaceweb.org/question/spacecraft/buran/buran-damaged.jpg
Altri dettagli sul Buran:
qui: http://www.aerospaceweb.org/question/spacecraft/q0153.shtml
oppure qui:
http://www.astronautix.com/craft/buran.htm
o sul sito della Molniya, dove si trovano anche moltissime foto in alta risoluzione:
www.buran.ru
Merda, ma è venuto giù tutto l'hangar! :eek:
miii ma e' esploso qualcosa o e' crollato? :eek:
so che non e' la sede adatta, ma il design del sistema Shuttle russo era migliore o peggiore di quello statunitense? A mio avviso il fatto che l'orbiter non avesse i motori a bordo era un vantaggio in termini di peso (meno massa da muovere una volta distaccato l'ET se si puo' ancora chiamare cosi') e di volume (a tutto vantaggio del carico pagante..)
un'ultima cosa, quanti booster aveva? dall'ultima foto sembra quasi ne avesse due per lato. :confused:
EDIT: mi sono risposto da solo guardando i preziosissimi link di Gio ;)
se necessario spostiamo questo filone su un thread piu' adatto..
Da Nasaspaceflight.com (http://www.nasaspaceflight.com/content/?cid=4670):
NASA has 5-Seg CLV Alternatives
By Chris Bergin / Daniel Handlin, 7/27/2006 10:15:00 AM
NASA, world renowned for having a back up plan, has one for the Crew Launch Vehicle (CLV), with a new 2x3-segment SRB (Solid Rocket Booster) CLV design, held as a concept - in case major problems with the current 5-segment Ares I booster arise.
The new booster would employ twin three-segment SRBs and a liquid-fueled core stage, which - overall - would be significantly cheaper in terms of some ground processing and infrastructure costs, and perhaps easier to control.
NASA is understood to have been examining this new 2x3 SRB CLV concept, due to a number of advantages over the current 5-segment CLV, with easier ground handling and control in flight.
The new vehicle involves a core liquid-fueled stage with 2 J-2X engines, and twin 3-segment SRBs. These J-2X engines would be air started after launch along with the SRBs, and would serve as the core engines of the launcher. The core stage may be a derivative of the Shuttle External Tank.
This vehicle is about the same height of the Shuttle and resembles a much-downsized Ares V cargo launch vehicle. A number of advantages has been identified, one being the current launch pad and crawler infrastructure will require far less modification to support this CLV than the Ares I - since it uses two SRBs and is more stable on the MLP than the tall and slender Ares I.
Additionally, this CLV is more similar to both the Ares V and STS than the 5-segment CLV, offering a more direct evolution to the Ares V, along with a less complex transition from the Shuttle due to its configuration.
'The 2X3 launcher would be much wider than the 5-seg SRB, but about half the height. It offers significant schedule, development, and ground safety improvement,' noted a source. 'It also makes TVC (thrust vector control) far easier than with the one SRM (Solid Rocket Motor) on the Ares I, and makes the vehicle more stable on the MLP (Mobile Launch Platform) than the extremely tall and thin Ares I.
As previously reported by this site, the Ares I vehicle will require a modified, lightweight MLP, due to the weight associated with the vehicle and its LUT (Launch Umbilical Tower). While costs can only be estimated at this stage of the development process, the 2X3 concept would at least allay such budgetary strains.
'The 2x3 would require little in the way of launch pad modifications to fly,' added the source. 'The existing MLP could be used more or less as is, with the exception of having to relocate the tail service masts. The existing FSS (Fixed Service Structure) could be used, again more or less as it now is. The biggest changes would be relocation of the hydrogen vent system arm, the oxygen vent system arm, and the crew access arm.
'The existing RSS could be used for SRB servicing, and work platform access to the entire vehicle. Modifications to the RSS would be minor, and would mostly involve removing now unused equipment. The RSS would offer the vehicle a good degree of wind and weather protection, some thing the big stick will be lacking.
'The VAB could be used largely as is, and little would have to be modified to provide work platform access for stacking and check out operations. This is not a trivial item, as modifications to the VAB is one of the big cost factors for CLV. The stacked vehicle could be moved to and from the pad with out any bracing, the thing would be far stiffer than the shuttle stack is, while the existing transporter could be used as is, with no changes at all.'
However, such a concept would incur its own increased costs, given there are two boosters to build, service and recover for each flight, as opposed to the one with the Ares I.
At this time the 2X3-seg vehicle hasn't advanced past the conceptual stage, as NASA proceeds as planed with the 5 segment 'big stick' CLV. However, it is fair to assume this could be a useful backup plan, should the stick suffer a major design problem.
According to multiple sources in industry and at NASA, the current 5-segment Ares I booster is about 10,000 pounds overweight; a number of possible fixes to the problem have been worked on with ATK, who builds the SRBs, but all are currently seen as unworkable due to time and budgetary issues.
However, this weight issue was immediately cancelled out of the overall equation, following the 6,500 lbs savings on the CEV review (DAC-2). Such savings translate into a 9:1 ration from the upper stage to the first stage, allowing for a fair amount of margin in the baseline.
While NASA continues to morph its baseline to proceed with the current concept of the Ares I, should the potential back up plan of the 2X3 concept come into play, alternative benefits could be achieved.
'There would be no need for any RCS systems at all, except for those on the CEV. The 2X3 concept would also negate all the structural stiffness problems with the Big Stick,' noted the source. 'It would make required changes to the SRB TVC system a moot point.
'There is also 'engine out' capability, if a J-2X fails in the last half of the powered flight stage - this reduces the chances of a trans-Atlantic abort. Also, a lot of SRB recovery problems are eliminated, as the boosters would fly trajectories much like the current boosters on the shuttle fly, which would make the SRB recovery divers work less risky.
'The core stage could largely be made with existing ET tooling and fixturing, thus making this a truly Shuttle derived vehicle. It could be used as a cargo launcher for ISS operations, and since it is short and stubby, it could carry vehicles like the X38 to orbit.'
While this is nothing more than a concept, information acquired shows its potential, especially if there's a major issue with the current Ares I design process. Ares I will suffer hiccups during the aforementioned process, but it would take a major problem - one that would cost a hugely unacceptable level of funding to correct, for alternatives to be considered at this stage.
However, it is encouraging that the 2X3 concept shows that NASA is not heading down a one way street.
l'X38 citato nell'articolo e' questo? non era stato cancellato? sto perdendo un po' il filo con questi lifting bodies.. ;)
http://www.nasa.gov/centers/dryden/images/content/108711main_X-38_flight.jpg
http://www.nasa.gov/centers/dryden/news/FactSheets/FS-038-DFRC.html
il progetto X-38 non è mai stato annullato ufficialmente, diciamo che attualmente è "freezzato" per mancanza di fondi.
il progetto X-38 non è mai stato annullato ufficialmente, diciamo che attualmente è "freezzato" per mancanza di fondi.
andiamo male :muro:
poi come ciliegina sulla torta aggiungo una piccola news che ha del ridicolo:
Nasa: perso filmato uomo sulla Luna
La pellicola originale smarrita negli archivi dell'agenzia (ANSA) - WASHINGTON, 14 ago - Il filmato originale con Neil Armstrong che muove nel 1969 i primi passi sulla Luna non si trova piu', smarrito negli archivi Nasa. Lo rivela il Washington Times, secondo cui la collocazione di delle videocassette e' stata dimenticata, dopo 35 anni che non veniva utilizzata. Un portavoce dell'agenzia spaziale ha spiegato che la ricerca andra' avanti fino a quando sara' necessario. Fortunatamente c'e' ancora una copia delle immagini viste il 21 luglio 1969 da 600 milioni di persone.
Da NasaSpaceFlight.com:
New NASA footage of CEV
Chris Bergin, 8/19/2006 11:58:00 PM
With less than two weeks to go before NASA awards the CEV (Crew Exploration Vehicle) contract to either Lockheed Martin or Northrup Grumman/Boeing, CEV Project Manager Skip Hatfield has given a full review of the current status on the design phase of the vehicle.
An 85 minute address to Constellation workers at their recent "All Hands" meeting, included new video of the interior and exterior of the crew module, including fascinating test and simulation footage.
The awarding of the CEV contract will be made on August 31 - according to NASA memos - to the winning contractor, although it has not yet been announced when this will be made public.
While sources have continued to note serious issues with the Crew Launch Vehicle (CLV) - with an additional TIM meeting taking place at the Kennedy Space Center next week, dedicated to the CLV - the CEV has been going to plan throughout its design stages - now currently passing through DAC-2.
The current work being carried out on the CEV is to ensure a blueprint of requirements and parameters can be given as guidelines for contractor to work alongside NASA in bringing the CEV to life, ahead of a 2012-2014 debut manned mission to the International Space Station (ISS).
'One of the big activities we've had going on is the run down to the final days of the contractor selection,' said Hatfield. 'The first destination for CEV is to the International Space Station - and we have a mock up for interior layout, built in Building 9 next to the current Space Station models.
New video and images show the work on the inside of the CEV, which will compromise of state-of-the-art computer displays and software.
'In parallel with the interior design, we're also doing a lot of work with the cockpit design,' added Hatfield. 'We've a NASA led team that is heavily involved with working on the development of the windows. The facilities we have here at JSC are seeing the mock up of those windows - and being able to simulate the outer window views.
'In addition to that, we're also working on the conceptual cockpit instrument panel layout. We're very rapidly turning these things around here.'
Hatfield himself joined the Constellation program from the role of ISS Program Integration Office Chief. With the CEV not being used for moon trips until around 2018, his experience is being called upon for the initial role of the CEV, to replace the Space Shuttle as the next generation vehicle that will carry astronauts to the orbital outpost.
'The team is working very hard on the LIDS (Low Impact Docking System),' he added, speaking about the mechanism that will use to dock with the ISS.
'We've challenged them to go ahead and get this system done - and they've picked up the pace considerably,' Hatfield added jokingly - as a time-lapse video showed workers racing around the system.
Styled on Apollo, the CEV will parachute back to Earth, but while Apollo splashed down into the Pacific Ocean, the CEV will land on its airbags on a designated landing site (likely in California). Engineers have been testing simulations of the CEV landing on both land and sea.
'We have a number of landing tests that we're doing, including simulations of the CEV landing in water,' added Hatfield. 'We also carry out drop tests of various configurations, which plough up lots of dirt up at Langley (Flight Research Center - LaRC) as we do various impacts for straight down, as well as angular impacts.
'One of the neat things that happened during the testing was that we were able to do some testing on the flora and forna requirements,' as the video showed super high resolution photography of a CEV heat shield landing on the ground at LaRC, even capturing a dragonfly getting out of the way at the very last second.
'We missed him unfortunately, so we weren't able to verify any requirements,' joked Hatfield. 'But it is fascinating to see how close this is working here.'
Testing and evaluations are continuing to be carried out on what will become the heat shield for the CEV, with materials that will make up the crew's barrier from the intense heat of re-entry - plus computational analysis - being put through the rigours of NASA's super computers.
'A lot of the other tests that we're doing for the Thermal Protection System (TPS) involve work at the Johnson Space Center (JSC) and out at Ames Research Center (ARC),' continued Hatfield.
'We're testing a number of materials that can be used in the heat shields. We're doing these tests as risk reduction elements ahead of bringing the contractor on board, so this has been helping us a great deal.
'A mock up at the Langley Research Center of the Launch Abort System has seen a lot of analytical work with the super computers and other analytical techniques to look at the computational flows involved with abort cases and entry cases.'
As part of the evaluations, NASA is also using wind tunnel testing on scaled models of the vehicle, and also - surprisingly - firing models out of cannons, to show data on the launch abort system.
'One of the cool tests that we're doing - and being an ex-Army guy I can always get into these kinda things - is we're actually firing scale models of the CEV out of cannons, which can help validate a lot of our computational codes.
'That work is then used as part of the computational work, and then we're doing a lot of work in our wind tunnels with the entry cases as well as the ascent cases.
'There have been a series of very sophisticated models created for this work, filled with instrumentation and equipment to help to run these tests, so that we can simulate various angles of attack for entry and various flying characteristics as we're heading toward the ground.
'Fresh from that, we're able to get flow visualisations of what the aerodynamic flow is off the vehicle.'
Throughout the video, which includes updates on all the elements of the Ares I-1 test vehicle, Ares 1 CLV and CEV, and even CaLV (Cargo Launch Vehicle), full scale fabricated parts can be seen, giving an idea of real life scale, which Hatfield was keen to note.
'Another mock up, up at the Glenn Research Center, is off the Service Module (SM) - this one is for the 5.5 meter diameter vehicle, so it's a little bit bigger than what the real one will be, but it gives you an idea of the scale of this hardware that we're going to be producing for this program.
'It really is quite large.'
http://forum.nasaspaceflight.com/forums/get-attachment.asp?action=view&attachmentid=10687
http://forum.nasaspaceflight.com/forums/get-attachment-big.asp?action=view&attachmentid=10688
http://forum.nasaspaceflight.com/forums/get-attachment-big.asp?action=view&attachmentid=10689
http://forum.nasaspaceflight.com/forums/get-attachment-big.asp?action=view&attachmentid=10690
http://forum.nasaspaceflight.com/forums/get-attachment-big.asp?action=view&attachmentid=10692
http://forum.nasaspaceflight.com/forums/get-attachment-big.asp?action=view&attachmentid=10691
http://forum.nasaspaceflight.com/forums/get-attachment-big.asp?action=view&attachmentid=10694
http://forum.nasaspaceflight.com/forums/get-attachment-big.asp?action=view&attachmentid=10695
http://forum.nasaspaceflight.com/forums/get-attachment-big.asp?action=view&attachmentid=10696
Crew Exploration Vehicle given the name Orion
NASA NEWS RELEASE
Posted: August 22, 2006
NASA announced Tuesday that its new Crew Exploration Vehicle will be named Orion.
Orion is the vehicle NASA's Constellation Program is developing to carry a new generation of explorers back to the moon and later to Mars. Orion will succeed the space shuttle as NASA's primary vehicle for human space exploration.
Orion's first flight with astronauts onboard is planned for no later than 2014 to the International Space Station. Its first flight to the moon is planned for no later than 2020.
Orion is named for one of the brightest, most familiar and easily identifiable constellations.
"Many of its stars have been used for navigation and guided explorers to new worlds for centuries," said Orion Project Manager Skip Hatfield. "Our team, and all of NASA - and, I believe, our country - grows more excited with every step forward this program takes. The future for space exploration is coming quickly."
In June, NASA announced the launch vehicles under development by the Constellation Program have been named Ares, a synonym for Mars. The booster that will launch Orion will be called Ares I, and a larger heavy-lift launch vehicle will be known as Ares V.
Orion will be capable of transporting cargo and up to six crew members to and from the International Space Station. It can carry four crewmembers for lunar missions. Later, it can support crew transfers for Mars missions.
Orion borrows its shape from space capsules of the past, but takes advantage of the latest technology in computers, electronics, life support, propulsion and heat protection systems. The capsule's conical shape is the safest and most reliable for re-entering the Earth's atmosphere, especially at the velocities required for a direct return form the moon.
Orion will be 16.5 feet in diameter and have a mass of about 25 tons. Inside, it will have more than 2.5 times the volume of an Apollo capsule. The spacecraft will return humans to the moon to stay for long periods as a testing ground for the longer journey to Mars.
NASA's Johnson Space Center, Houston, manages the Constellation Program and the agency's Marshall Space Flight Center, Huntsville, Ala., manages the Exploration Launch Projects' office for the Exploration Systems Mission Directorate, Washington.
Marilson
23-08-2006, 15:32
la nasa si è trovata costretta a dover rivelare il nome Orion per il CEV dopo che un astronauta a bordo della ISS lo aveva sputtanato in diretta tv :sofico:
Michael Braukus/Beth Dickey
Headquarters, Washington
202-358-1979/2087
Kelly Humphries
Johnson Space Center, Houston
281-483-5111
MEDIA ADVISORY: M06-137
NASA ANNOUNCES CONTRACTOR FOR ORION CREW EXPLORATION VEHICLE
NASA Exploration Systems' managers will host a press conference at 4
p.m. EDT Thursday, Aug. 31, to announce the prime contractor to
design, develop, and build Orion, America's next human spacecraft.
The press conference will be in the NASA headquarters auditorium, 300
E Street S.W., Washington. It will air live on the Web and on NASA
TV. Reporters may ask questions from participating NASA locations.
Reporters should coordinate with local agency centers by 4 p.m. EDT
Wednesday, Aug. 30 for access information.
Associate Administrator for the Exploration Systems Mission
Directorate Scott Horowitz, Exploration Deputy Associate
Administrator Doug Cooke, Constellation Program Manager Jeff Hanley,
and CEV Project Manager Caris A. (Skip) Hatfield will announce the
selection and discuss the program.
Orion is the vehicle NASA is developing to carry a new generation of
explorers back to the moon and later to Mars. Orion will succeed the
space shuttle as NASA's primary vehicle for human space exploration.
Orion's first flight with astronauts aboard is planned for no later
than 2014 to the International Space Station. Its first flight to the
moon is planned for no later than 2020.
For NASA TV streaming video, downlink and scheduling information,
visit:
http://www.nasa.gov/ntv
For information about NASA's Exploration Systems Mission Directorate
visit:
http://www.nasa.gov/exploration
Lockheed Martin to build CEV spacecraft
BY WILLIAM HARWOOD
STORY WRITTEN FOR CBS NEWS "SPACE PLACE" (http://cbsnews.cbs.com/network/news/space/current.html) & USED WITH PERMISSION
Posted: August 31, 2006
America's next manned spacecraft, the wingless successor to the space shuttle that will carry astronauts to and from the international space station and eventually back to the moon, will be built by Lockheed Martin Corp. under contracts valued at up to $8.15 billion, NASA announced today.
Lockheed Martin, leading a team that includes United Space Alliance, Honeywell, Hamilton Sundstrand and Orbital Sciences, won the coveted contract to build the new Orion spacecraft over a rival contractor team led by Northrop Grumman and Boeing. The announcement came two-and-a-half years after President Bush unveiled a new space policy in January 2004 that called for development of a space shuttle replacement.
http://www.spaceflightnow.com/news/n0608/31cevorion/cevorion.jpg
This artist's concept shows an Orion spacecraft in lunar orbit, with the Earth in the background. Credit: Lockheed Martin
"This is the first human-rated spacecraft to take astronauts from Earth to orbit that we have developed in over 30 years," said Scott Horowitz, director of NASA's Exploration Systems directorate. "This is an exciting time to be at NASA. Project Orion will return America back to the moon and to the destinations beyond."
Under an initial $3.9 billion contract that begins Sept. 8 and runs through Sept. 7, 2013, Lockheed Martin will design, build and test two pathfinder spacecraft: a manned Orion crew capsule and an unmanned variant that can be used to carry supplies and unpressurized cargo to the international space station.
A second contract valued at up to $3.5 billion, starting as early as Sept. 8, 2009, and running through Sept. 7, 2019, will cover the cost of buying additional spacecraft depending on NASA's eventual manifest requirements, the ultimate reusability of the spacecraft and other factors. NASA has not yet made an estimate of how many spacecraft might ultimately be built.
Another $750 million is earmarked for sustaining engineering to pay for incremental improvements, advanced engineering and long-term support. That contract would run from Sept. 8, 2009, through Sept. 7, 2019.
Lockheed Martin has never served as prime contractor for a manned spacecraft and at least some knowledgeable space observers predicted the Northrop Grumman/Boeing proposal would win the day. But Horowitz said NASA chose the best team for the job.
"It's been 30 years since anyone has built a human-rated spacecraft to take people from the Earth to low-Earth orbit," he said. "This is a new generation of engineers and technicians that are going to design and develop this spacecraft."
Adrian Laffitte, director of government relations for Lockheed Martin in Florida where the new spacecraft will be assembled for flight, said the contract is "good for NASA and good for the country."
"I think it's really exciting we're going to be part of what's going to carry the next generation of people to the moon and beyond," he said in a telephone interview. "It's an incredible feeling. We're going to be part of history."
http://www.spaceflightnow.com/news/n0608/31cevorion/cevorionstation.jpg
Orion approaches the International Space Station, as depicted in this artist's concept. Credit: Lockheed Martin
The new spacecraft, dubbed "Apollo on steroids" by NASA Administrator Mike Griffin, will not be ready for manned flights until at least 2012 and more likely a few years later. NASA officials say "not later than 2014." Unmanned test flights of the shuttle-derived Ares 1 booster that will carry Orion into low-Earth orbit are scheduled to begin in 2009.
After the shuttle is retired in 2010, NASA will begin development of a new heavy lift launch vehicle - the Ares 5 - and under optimistic scenarios, U.S. astronauts could return to the moon as early as 2018 or 2020, depending on funding.
The new spacecraft and mission architecture has its roots in the 2003 Columbia disaster. The Columbia Accident Investigation Board, along with recommending fixes to correct the technical problems that led to the disaster, also recommended that NASA "recertify" the space shuttle design if the agency intended to fly the winged orbiters past 2010.
The cost of recertification - a complex effort to inspect and revalidate the shuttle from the ground up - would have been extreme and the Bush administration decided to take a different course.
In January 2004, President Bush unveiled a new space initiative that called for finishing the international space station and retiring the shuttle by 2010. At the same time, NASA was told to begin development of a new family of spacecraft to carry astronauts to and from low-Earth orbit and, by the end of the next decade, back to the moon.
The long-range goal is manned flights to Mars, but in the near term, the president's initiative is focused almost exclusively on returning to the moon. The goal is long-duration stays on the lunar surface much like astronauts now make six-month tours of duty aboard the space station.
As originally envisioned by Bush, the exploration initiative would cost $12 billion over the first five years. The president promised $1 billion in new money with NASA responsible for coming up with the other $11 billion by diverting funds from existing programs.
Since then, the space agency has cut a wide variety of programs to help pay for the exploration initiative, to fund the agency's continuing recovery from the Columbia accident and ongoing support for downstream shuttle/station operations. The cuts have prompted widespread concern in some quarters about reduced spending for aeronautics, Earth observation and unmanned exploration.
"The science community argues with the apportionment of the funds," Griffin said in a recent interview. "And that's unfortunate, because all of our different portfolios - science, manned spaceflight, aeronautics - all of them have had to be trimmed, all of them have 'given at the office,' if you will. Science hasn't been singled out."
http://www.spaceflightnow.com/news/n0608/31cevorion/cevorionmoon.jpg
This artist's concept shows Orion docked with a lunar lander flying in orbit around the moon. Credit: Lockheed Martin
The recently named Orion crew exploration vehicle will be similar in outward appearance to the old Apollo moon capsules, blunt, cone-shaped spacecraft with solid-fuel escape rockets that will make a parachute descent to Earth. NASA has not yet decided whether the craft will splash down in the ocean or touch down on land.
The new spacecraft will have a diameter of 16.5 feet and weigh more than 18,000 pounds at launch. It will be able to carry six astronauts to and from the space station, thus serving as a lifeboat for the outpost, and four astronauts to and from the moon.
While the manned craft and its solar-powered service module can carry a limited amount of cargo, heavy components needed for future flights to the moon or Mars will ride to orbit aboard Ares 5 rockets featuring twin five-segment solid-fuel boosters, a first stage powered by five hydrogen-fueled engines and a second stage built around the same engines that power the Ares 1 second stage.
By putting the crew module atop the Ares 1 rocket instead of on one side like the space shuttle, NASA will eliminate in one stroke any concern about potentially catastrophic impacts from insulation, ice or other debris. Escape rockets will provide a survivable abort capability even in cases of catastrophic launch failures. NASA managers say the goal is a spacecraft with a failure rate of 1-in-2,000 vs 1-in-200 or so for the space shuttle.
"With the Ares 1 launch vehicle and the CEV, we're deliberately building in a substantial amount of flexibility," Griffin told CBS News in a recent interview. "The Ares 1 can be launched in an unmanned mode, it can be launched with the service module and not with the command module and can be used to take up unpressurized cargo in that fashion to the station, including (gyroscopes) and other (large) things.
"The CEV command module will have a fair-size door in it on purpose to allow us to fly, if we choose, with a minimum number of crew and take up a large amount of pressurized cargo. We've got a good deal of volume inside that thing. The service module on the CEV will have a trunk, if you will, (and) we can take up unpressurized cargo in the trunk. So we're designing the system to be modular and adaptable and flexible so it can do much, not all, but much of what the shuttle does today.
"The shuttle has enormous capabilities, not all of which we will be able to replicate in the CEV system. But we're going to capture a good deal of it and we can, we absolutely can use the CEV and the Ares 1 launch vehicle to sustain the space station."
http://www.spaceflightnow.com/news/n0608/31cevorion/cevorionlaunch.jpg
The Orion crew vehicle, depicted in this artist's concept, launches on board the Ares 1 rocket. Credit: Lockheed Martin
The space station, in turn, will serve as a test bed for life support, habitability and other technologies needed for eventual flights to Mars and to collect the physiological data needed to develop countermeasures for the harmful effects of long-duration space flight.
"From my perspective as an engineer, which I admit is biased, the main purpose of the station is to learn how to live and work in space," Griffin said in the CBS interview. "Whenever humans are ready to go to Mars, we're going to need an amount of hardware in space about the size of the space station when it's done. That's how much we need to go to Mars. And hopefully we will have learned so much from how we've assembled station that we'll do a great job on it."
Griffin said the space station "is not relevant to the moon."
"That said, ... I think we can make some use of the station for our development of a lunar base in the longer run," he said. "But really, in my mind the station is far more useful in terms of thinking about Mars."
http://www.spaceflightnow.com/news/n0608/31cevorion/
Mitico Octane, grazie!
Scrivo da un internet point quindi faccio presto... io cmq facevo il tifo per Northrop-Grumann, ma era prevedibile che vincesse LM, con la maggiore esperienza in sistemi cosi' complessi...
Bene vado, a presto!
assegnati anche gli appalti anche per la progettazione dei crawlers:
da NasaSpaceFlight
NASA makes Constellation decisions
By Chris Bergin, 8/31/2006 2:02:00 PM
NASA makes Constellation decisions
© NASA via sources (L2)
While NASA announced Lockheed Martin as the winner of the multi-billion contract to build the Orion Crew Exploration Vehicle (CEV), NASA has approved the construction of two new Mobile Launchers to be built for the Ares I Crew Launch Vehicle (CLV).
The two new mobile pads will be a lightweight design, due to the weight capacity of the current crawler-transporters. Two new super crawlers will be built for the CaLV (Cargo Launch Vehicle) - known as Ares V.
A local engineering firm RS&H are working on design trade offs for the two MLs. The first ML is due to be completed by 2010, with the second by mid 2012. One of the current MLP (Mobile Launch Platforms) will be used for the Ares I-1 test flights.
The new MLs will have a minimal LUT (Launch Umbilical Tower) and FSS (Fixed Service Structure), which - along with the fully loaded solid first stage of the Ares 1 - adds the bulk of the weight which ruled out the use of the current MLPs.
Shuttle operations on Pad 39B will cease on March 31, 2007, with all remaining STS flights utilising Pad 39A - which is currently undergoing an overhaul that is expected to last for another six months.
Pad 39B will see its RSS (Rotating Service Structure) dismantled in 2007, with the existing FSS remaining in place, given it is tall enough for the test flights. However, the LOX Vent Arm and the Crew Access Arm will also be modified to access the interstage and SRB electronics respectively.
These are still under review as the Ares 1 is understood to have been shortened by several meters in a recent - and ongoing - design review.
The modified GOX vent arm - the ET's beanie cap arm - will be used as an access platform for the dummy stage of the Ares I-1, which will allow workers inside the vehicle's upper stage at the launch pad.
Da NasaSpaceFlight.com (http://www.nasaspaceflight.com/content/?cid=4810):
Lockheed Martin Lunar Landers revealed
By Daniel Handlin / Chris Bergin, 9/16/2006 11:56:00 AM
After recently winning the Orion CEV contract, Lockheed Martin is looking to the future, with a new study exploring a variety of possible Lunar Surface Access Module (LSAM) strategies and configurations.
The study explores three unique ideas for using a LH2/LOX fueled LSAM to facilitate VSE (Vision For Space Exploration) lunar landings.
The thrust of the new report is a focus on adapting LOX/LH2 landers for simple use as a lunar transportation system. LOX/LH2 is extremely efficient and can be used both for providing electricity and water in fuel cells - and in conjunction with a lunar ISRU system. However, because LH2 is so bulky and the high area ratio LOX/LH2 engines are so long, it has been difficult to design effective landers that use LOX/LH2 in their propulsion system.
Il resto dell'articolo qua:
http://www.nasaspaceflight.com/content/?cid=4810
NASA Completes Review Milestone for Ares I Launch Vehicle
http://www.nasa.gov/images/content/166606main_duo_ares_330.jpg
-- bringing the agency one step closer to developing a new mode of space transportation for astronauts on missions to explore the moon, Mars and other destinations. The system requirements review confirmed that the Ares I system requirements were complete, validated and responsive to mission requirements.
Il resto dell'articolo:
http://www.nasa.gov/mission_pages/constellation/main/index.html
e anche:
http://www.spaceflightnow.com/news/n0701/07ares1/
NASA investigation over Ares Parachute Drop Test failure
da NasaSpaceFlight.com
By Chris Bergin, 2/6/2007 5:42:06 PM
An investigation team has been assembled at the Kennedy Space Center (KSC) following a failure that occurred on the third Parachute Drop Test (PDT) at the Yuma Proving Grounds in Arizona.
The incident, which destroyed the Drop Test Vehicle (DTV), happened during a drop test of the pilot parachute on top of the DTV, which impacted the ground at such a speed, special excavation equipment is required to recover the nose of the DTV - which is buried 30 feet below the surface.
http://content.nasaspaceflight.com/library/1016/A1(3).jpg
http://www.nasaspaceflight.com/content/?cid=5014
Tanti piu' fallimenti hanno in fase di design tanto piu' sara' sicuro il veicolo.
Pero' come nota personale mi viene solo da dire che gli sta bene visto che hanno deciso di abbandonare sia i delta-winged orbiters sia i lifting bodies :ciapet:
Beh si, cmq c'è da dire che siamo ancora ai test iniziali, è anche molto probabile che la review finale (che sta cominciando in questi giorni) porterà ad ulteriori importanti modifiche all'intero sistema Ares.
lzeppelin
10-02-2007, 19:27
iscritto!
Un po' di aggiornamenti sullo sviluppo del programma
Fonte: NASA
http://www.nasa.gov/images/content/178850main_01_med_060707.jpg
http://www.nasa.gov/images/content/178852main_02_med_060707.jpg
http://www.nasa.gov/images/content/178854main_03_med_060707.jpg
http://www.nasa.gov/images/content/178856main_04_med_060707.jpg
http://www.nasa.gov/images/content/178858main_05_med_060707.jpg
http://www.nasa.gov/images/content/178860main_06_med_060707.jpg
http://www.nasa.gov/images/content/178862main_07_med_060707.jpg
http://www.nasa.gov/images/content/178864main_08_med_060707.jpg
http://www.nasa.gov/images/content/178866main_09_med_060707.jpg
http://www.nasa.gov/images/content/178868main_10_med_060707.jpg
http://www.nasa.gov/images/content/178870main_11_med_060707.jpg
http://www.nasa.gov/images/content/178872main_12_med_060707.jpg
http://www.nasa.gov/images/content/178874main_13_med_060707.jpg
http://www.nasa.gov/images/content/178876main_14_med_060707.jpg
http://www.nasa.gov/images/content/178878main_15_med_060707.jpg
http://www.nasa.gov/images/content/178880main_16_med_060707.jpg
i links:
http://www.nasa.gov/mission_pages/constellation/news/constellation_briefing_060707.html
http://www.nasa.gov/mission_pages/constellation/orion/umbilical_inspection.html
da SpaceFlightNow:
Boeing to build NASA's upper stage for Ares I
BOEING NEWS RELEASE
Posted: August 28, 2007
ST. LOUIS - The Boeing Company has been awarded a NASA contract valued at approximately $514.7 million to produce the upper stage of the Ares I crew launch vehicle. This element provides the navigation, guidance, control and propulsion required for the ascent of the second-stage Ares I into low-Earth orbit.
l'articolo completo:
http://www.spaceflightnow.com/news/n0708/28boeingares1/
http://www.nasa.gov/images/content/188056main_20070828_ares1_01_330.jpg
Image above: (left to right) Brewster Shaw, vice president/general manager, Boeing Space Exploration, Doug Cooke, NASA deputy associate administrator, Exploration Systems, Danny Davis, NASA Ares I upper stage element manager, Steve Cook, NASA Ares Project manager and Jeff Hanley, NASA Constellation Program manager, pose for a photo in front of a model of an Ares I rocket.
Credit: NASA/Bill Ingalls
Una fetta di torta anche per loro ;)
NASA Begins Testing of Engine That Will Power Ares Rockets
http://www.nasa.gov/images/content/206748main_J2X_ppack1_226x170.jpg
The historic J-2 engine undergoes new testing. Image Credit: NASA/SSC
On Dec. 18, NASA began testing core components of a rocket engine from the Apollo era on the A-1 Test Stand at NASA's John C. Stennis Space Center near Bay St. Louis, Miss. Data from the tests will help NASA build the next generation engine that will power the nation's new Ares launch vehicles on voyages that will send humans to the moon.
il link alla pagina su Nasa.gov:
http://www.nasa.gov/mission_pages/constellation/main/index.html
dal momento che stiamo trascurando il thread butto qualche aggiornamento:
Constellation Challenges - test and flight schedules under pressure
By Chris Bergin, 4/17/2008 1:38:55 PM
The Constellation Program is continuing to push through technical and monetary challenges in an attempt to protect the long term schedule.
The latest internal workings are currently being implemented into the Initial Operational Capacity (IOC) schedule, which shows the threat of delays range through the entire schedule - from the Ares I-X test flight, all the way through to NASA's return to the moon.
http://www.nasaspaceflight.com/content/?cid=5404
ammazza quanto è brutto!!!
sembra di aver fatto un passo indietro rispetto allo shuttle ed al saturn :mbe:
ma a livello di missioni e prestazioni che differenza ci sara' rispetto ad un saturn di oltre 30 ani fa'?
ammazza quanto è brutto!!!
sembra di aver fatto un passo indietro rispetto allo shuttle ed al saturn :mbe:
ma a livello di missioni e prestazioni che differenza ci sara' rispetto ad un saturn di oltre 30 anni fa'?
L'Ares V dovrebbe portare intorno alle 130 tonnellate in orbita contro le 118 del Saturn V. Al contrario del Saturn è specializzato come cargo: in una missione lunare porta su Altair (http://en.wikipedia.org/wiki/Altair_(spacecraft)) e l'Earth Departure Stage (http://en.wikipedia.org/wiki/Earth_Departure_Stage).
Gli astronauti vanno su con l'Ares I che porta Orion (http://en.wikipedia.org/wiki/Orion_(spacecraft)) (intorno alle 25 tonnellate). I due "pezzi" si attaccano in orbita terrestre e vanno sulla luna.
Per un esempio delel nuove missioni lunari guarda questo (http://www.spaceref.com/news/viewsr.html?pid=25506) PDF.
nn capisco perche usare 2 vettori
che implica un costo maggiore, tempi di preparazione maggiori, procedure piu' complesse e rischiose (tipo l'assemblaggio in orbita)
non si poteva riesumare il progetto saturn V ovviamente aggiornato
risparmio sui costi del progetto di uno dei vettori piu' potenti mai costruiti
una procedura gia provata e piu' semplice
Sull'assemblaggio in orbita credo che ormai abbian abbastanza esperienza visto tutte le volte che si devon agganciare alla ISS
minkia come siamo arretrati:mbe: :mbe:
l'ares V sara' lanciato verso il 2018
e non sara molto diverso in quanto a prestazioni dal saturn V
(131 T contro 118 T)
MA PARLIAMO DI UN VETTORE VECCHIO DI OLTRE 50 ANNI :eek: :eek:
se poi lo accositamo al razzo russo ENERGIA il confronto è impietoso (175 T)
l'europa poi fa una figuraccia con il suo ariane 5 ( 21 T)
mi rattrista essere nato in un epoca cosi scarsa di evoluzioni (di questo passo nemmeno i figli dei miei filgli vedranno lo sbarco su marte...ED HO APPENA 28 ANNI)
minkia come siamo arretrati:mbe: :mbe:
l'ares V sara' lanciato verso il 2018
e non sara molto diverso in quanto a prestazioni dal saturn V
(131 T contro 118 T)
MA PARLIAMO DI UN VETTORE VECCHIO DI OLTRE 50 ANNI :eek: :eek:
se poi lo accositamo al razzo russo ENERGIA il confronto è impietoso (175 T)
l'europa poi fa una figuraccia con il suo ariane 5 ( 21 T)
mi rattrista essere nato in un epoca cosi scarsa di evoluzioni (di questo passo nemmeno i figli dei miei filgli vedranno lo sbarco su marte...ED HO APPENA 28 ANNI)
in questo ambito si predilige cio' che e' affidabile a quello che e' innovativo (anche per questioni economiche). Vedi per esempio le Soyuz russe
Sono comunque d'accordo che avrebbero fatto bene a prendere dalla famiglia di vettori Energia per gettare le basi per il Constellation.
Ovviamente motivazioni politiche ed economiche impediscono di fatto una simile "opportunita' ".
Per riesumare il Saturn V devi prima riesumare Von Braun :asd:
nn capisco perché usare 2 vettori
che implica un costo maggiore, tempi di preparazione maggiori, procedure piu' complesse e rischiose (tipo l'assemblaggio in orbita)
Evidentemente il discorso non è cosi semplice e noi (immagino :D), non abbiamo certo le conoscenze per metterci a discutere dell'argomento in maniera "competente".
A occhio è per evitare di dover creare un razzo enorme certificato per l'uomo (http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8705_002A_). Avranno fatto un calcolo "costi x sicurezza" e visto che gli conveniva fare cosi'.
non si poteva riesumare il progetto saturn V ovviamente aggiornato
risparmio sui costi del progetto di uno dei vettori piu' potenti mai costruiti
una procedura gia provata e piu' semplice
L'Ares V riusa varie tecnologie già conosciute: RS-68, gli SRB dello Shuttle potenziati, J-2X.
Per un nuovo Saturno V bisogna ri-certificare opportunamente tutte le parti, riprogettare dove serve per ottenere più potenza, sottostare ai più stringenti parametri di sicurezza e ricreare tutto il know-how sul suo funzionamento e gestione. Non è detto che sia cosi' economico.
minkia come siamo arretrati:mbe: :mbe:
l'ares V sara' lanciato verso il 2018
e non sara molto diverso in quanto a prestazioni dal saturn V
(131 T contro 118 T)
MA PARLIAMO DI UN VETTORE VECCHIO DI OLTRE 50 ANNI :eek: :eek:
se poi lo accositamo al razzo russo ENERGIA il confronto è impietoso (175 T)
l'europa poi fa una figuraccia con il suo ariane 5 ( 21 T)
mi rattrista essere nato in un epoca cosi scarsa di evoluzioni (di questo passo nemmeno i figli dei miei filgli vedranno lo sbarco su marte...ED HO APPENA 28 ANNI)
L'Ariane 5 fa il suo lavoro di lanciare satelliti commerciali. Viste le sue buone prestazioni e l'ottimo successo a livello di "vendite" non mi sembra proprio una figuraccia.
L'Energia da 175 tonnellate non ha mai volato quindi non è un gran metro di paragone :D.
Per le prestazioni non si scappa: con le tecnologie attuali e prossime se vuoi mandare su' più roba devi fare una razzo più grosso (o più efficiente) che costa(molto) di più. Siccome i finanziamenti non sono più quelli del programma Apollo non si scappa..
(Le navette riutilizzabili non sono una panacea per i costi di manutenzione che comportano.)
Dai dai su, non confrontiamo le capre con i cavoli... paragonare lanciatori per missioni umane con commerciali è già forzato (per le diverse destinaizoni d'uso).
Constellation è un programma molto diverso e molto più complesso dell'Apollo, e Ares è simile solo concettualmente a Saturn IV e V.
La ragione di 2 lanciatori è legata alla necessità di un diverso e molto maggiore carico trasportabile utile (rispetto all'Apollo per le previste missioni lunari, più lunghe e complesse e con 4 componenti dell'equipaggio.
Per chi chiede perchè non viene ritulizzato il Saturn V e via dicendo, vale sempre la stessa considerazione: i costi. A parte che il Saturn non soddisfa quasi nessun parametro richiesto per il programma di esplorazione lunare (per non parlare del possibile utilizzo per future missioni su Marte), sarebbe necessaria non solo una ri-certificazione totale per il volo, ma un vera e propria riprogettazione.
Tanto vale pensare ad un sistema del tutto nuovo, come in questo caso. Che poi si utilizzino parti di sistemi passati o in uso attualmente (Saturn e Shuttle), è un altro paio di maniche perchè oltre che essere ammodernati e modificati, sono soluzioni evidentemente del tutto valide, se non ottimali, per cui è chiaramente inutile progettarne delle nuove ed alternative (come i citati motori SRB, R-S68 e J2-X).
Pensate solo che la deadline del 2010 per il termine del programma STS è dettata principalmente dagli esorbitanti costi di ri-certificazione al volo che comporterebbe per far volare qualche anno in più gli Shuttle, nonchè dal fatto che i costi (che come sempre vanno aumentando) di sviluppo di un nuovo sistema di trasporto vanno a sommarsi al budget per il mantenimento e il phasing-out del programma STS (che copre un terzo del budget NASA).
L'Ares V riusa varie tecnologie già conosciute: RS-68, gli SRB dello Shuttle potenziati, J-2X.
è un buon razzo nulla da dire, pero' è un po triste pensare che l'evoluzione dei trasporti umani nello spazio siano quasi fermi da 50 anni per via del vil denaro ed una fila di burocrati che sperperano il denaro
Per un nuovo Saturno V bisogna ri-certificare opportunamente tutte le parti, riprogettare dove serve per ottenere più potenza, sottostare ai più stringenti parametri di sicurezza e ricreare tutto il know-how sul suo funzionamento e gestione. Non è detto che sia cosi' economico.
questo è vero
L'Ariane 5 fa il suo lavoro di lanciare satelliti commerciali. Viste le sue buone prestazioni e l'ottimo successo a livello di "vendite" non mi sembra proprio una figuraccia.
figuraccia intendo che rispetto all'america non abbiamo nessun razzo capace di portare l uomo nello spazio
L'Energia da 175 tonnellate non ha mai volato quindi non è un gran metro di paragone :D.
l'energia ha volato 2 volte (anche se nn a pieno carico)
Per le prestazioni non si scappa: con le tecnologie attuali e prossime se vuoi mandare su' più roba devi fare una razzo più grosso (o più efficiente) che costa(molto) di più. Siccome i finanziamenti non sono più quelli del programma Apollo non si scappa..
sono lontani i tempi alla corsa dello spazio :cry: :cry: :cry:
è un buon razzo nulla da dire, pero' è un po triste pensare che l'evoluzione dei trasporti umani nello spazio siano quasi fermi da 50 anni per via del vil denaro ed una fila di burocrati che sperperano il denaro
Per il fatto che non utilizza una struttura ad aeroplano come lo Shuttle? e che serve per andare oltre l'orbita bassa se non ha costare di più e ad aumentare intrinsecamente i rischi?
l'energia ha volato 2 volte (anche se nn a pieno carico)
Energia ha volato nella configurazione da 100 t. La versione di cui parli tu è la cosidetta "Vulkan", che non è mai stata sviluppata.
è un buon razzo nulla da dire, pero' è un po triste pensare che l'evoluzione dei trasporti umani nello spazio siano quasi fermi da 50 anni per via del vil denaro ed una fila di burocrati che sperperano il denaro
Per la LEO un simil-Shuttle può andare bene. I problemi principali sono due: sicurezza dell'equipaggio (con la struttura a razzo porti via il modulo di comando in caso di "problemi", con lo shuttle non è cosi' semplice) e costi.
Lo shuttle si deve sempre portare dietro "lo Shuttle"(una 70ina di tonnellate penso) quindi porta su poco carico. E non costa meno di un razzo per la manutenzione di cui ha bisogno.
Fuori dall'orbita terrestre è tutto peso inutile, quindi sono meglio altre "forme"..
figuraccia intendo che rispetto all'america non abbiamo nessun razzo capace di portare l uomo nello spazio
Ogni tanto ci pensano su, ma finora non hanno mai concluso niente. Finché non fanno neanche vedere in TV le partenze dello Shuttle che porta un modulo costruito in Italia la vedo durissima :muro:
l'energia ha volato 2 volte (anche se nn a pieno carico)
Ti ha risposto GioFX sotto.
sono lontani i tempi alla corsa dello spazio :cry: :cry: :cry:
Come detto sopra manca un interesse intenso che faccia spendere più soldi..
Per il fatto che non utilizza una struttura ad aeroplano come lo Shuttle? e che serve per andare oltre l'orbita bassa se non ha costare di più e ad aumentare intrinsecamente i rischi?
Domanda super-OT: si sa cosa usa(va) il Buran come TPS?
Stavo pensando che un "mini-Shuttle" che atterri su pista e minimizzi i costi di manutenzione(quindi con TPS e motori più semplici da gestire). Se non sbaglio la proposta della Northrop Grumman per Constellation era qualcosa del genere..
albertoz85
19-04-2008, 14:13
Ogni tanto ci pensano su, ma finora non hanno mai concluso niente. Finché non fanno neanche vedere in TV le partenze dello Shuttle che porta un modulo costruito in Italia la vedo durissima :muro:
E' molto probabile che dalla prossima ministeriale ESA, prevista per fine anno uscirà il programma definitivo per la costruzione di un mezzo manned europeo (già in fase di studio da parte ESA e nelle più grandi industrie aerospaziali Europee) insieme al programma di voli umani post-ISS europeo che sarà decisamente più autonomo di quello che è stato fino ad ora, con obiettivo finale Marte.
A guidare l'iniziativa c'è il nostro Paese con ASI insieme a Francia e Germania.
Ah, ok. Allora l'effetto "stampa" mi ha tratto in inganno(non che un po' più di copertura farebbe male :D).
Si sa già che vettore e "capsula" vogliono usare?
Domanda super-OT: si sa cosa usa(va) il Buran come TPS?
Avevo letto qualcosa a suo tempo... da quello che ricordo era abbastanza diverso, utilizzando materiali differenti. Qui dovrebbe esserci qualcosa:
http://www.buran-energia.com/documentation/documentation-akc-thermal-protection.php
:)
albertoz85
19-04-2008, 16:14
Ah, ok. Allora l'effetto "stampa" mi ha tratto in inganno(non che un po' più di copertura farebbe male :D).
Si sa già che vettore e "capsula" vogliono usare?
Se la si facesse in collaborazione con la Russia (discussioni sono in atto ormai da qualche anno, ma ultimamente sembrano essersi un po' raffreddate) il vettore sarebbe Russo, e quindi un Angara, mentre la capsula parzialmente Europea e si parla della classica forma a fanale (Soyuz) ma utilizzando un modulo di servizio che potrebbe essere derivato da quello dell'ATV.
Se invece, come sembra ultimamente, il mezzo fosse esclusivamente Europeo, il vettore sarebbe logicamente un Ariane 5 "manratizzato" e la capsula probabilmente conica "Apollo-like" con prestazioni simili a quelle di Orion.
In entrambi i casi si parla di un equipaggio fino a 6 astronauti.
La decisione verrà presa come detto alla prossima ministeriale, sicuramente si saprà qualche cosa prima in questi mesi che mancano.
Per il programma reale, che rientrerebbe nella "Vision" Aurora dell'ESA, si parla della proposta di Bignami per "Lunetta" che dovrebbe essere appoggiata anche da altri paesi.
Per chi volesse saperne di più, consiglio innanzitutto le news di forumastronautico.it in cui vengono inseriti tutti gli sviluppi appena vengono a galla: http://www.forumastronautico.it/
E in particolare nelle sezioni dedicate ad ESA e ASI in cui viene presentato il piano e i prossimi sviluppi sulla questione.
E in particolare consiglio l'ascolto all'intervista che il presidente dell'ASI, Giovanni Bignami ci ha concesso per il nostro ultimo numero del podcast, in cui fra le altre cose parla anche di questo.
http://astronauticast.forumastronautico.it/
Avevo letto qualcosa a suo tempo... da quello che ricordo era abbastanza diverso, utilizzando materiali differenti. Qui dovrebbe esserci qualcosa:
http://www.buran-energia.com/documentation/documentation-akc-thermal-protection.php
:)
Se la si facesse in collaborazione con la Russia (discussioni sono in atto ormai da qualche anno, ma ultimamente sembrano essersi un po' raffreddate) il vettore sarebbe Russo, e quindi un Angara, mentre la capsula parzialmente Europea e si parla della classica forma a fanale (Soyuz) ma utilizzando un modulo di servizio che potrebbe essere derivato da quello dell'ATV.
Se invece, come sembra ultimamente, il mezzo fosse esclusivamente Europeo, il vettore sarebbe logicamente un Ariane 5 "manratizzato" e la capsula probabilmente conica "Apollo-like" con prestazioni simili a quelle di Orion.
In entrambi i casi si parla di un equipaggio fino a 6 astronauti.
La decisione verrà presa come detto alla prossima ministeriale, sicuramente si saprà qualche cosa prima in questi mesi che mancano.
Per il programma reale, che rientrerebbe nella "Vision" Aurora dell'ESA, si parla della proposta di Bignami per "Lunetta" che dovrebbe essere appoggiata anche da altri paesi.
Per chi volesse saperne di più, consiglio innanzitutto le news di forumastronautico.it in cui vengono inseriti tutti gli sviluppi appena vengono a galla: http://www.forumastronautico.it/
E in particolare nelle sezioni dedicate ad ESA e ASI in cui viene presentato il piano e i prossimi sviluppi sulla questione.
E in particolare consiglio l'ascolto all'intervista che il presidente dell'ASI, Giovanni Bignami ci ha concesso per il nostro ultimo numero del podcast, in cui fra le altre cose parla anche di questo.
http://astronauticast.forumastronautico.it/
Grazie per i link/informazioni :flower:, adesso me li spulcio per bene..
Progressi (http://www.nasa.gov/offices/nesc/home/Feature_6_090908.html) nel lavoro del team che sta investigando le tecniche per realizzare lo scafo a pressione di Orion in compositi:
Team Gains Experience as it Builds Innovative Composite Spacecraft
Even as NASA’s Constellation program is designing the Orion crew module that will carry astronauts back to the moon and beyond, another NASA team is exploring alternate materials and fabrication techniques that promise even more advances for future spacecraft. Aerospace composites, not unlike the materials used in open-wheeled racecars and high-end sporting equipment, are lightweight and tough. And - this fiber and resin-filled material can be fabricated into complex shapes with significantly fewer tools and parts with much less labor than conventional metal-based construction techniques.
Of course, if it were easy to do, it would have already been done. Using new technologies to build a space-rated pressure vessel to safely carry humans beyond earth orbit is a technical challenge that has yet to be demonstrated.
That’s why the NASA Engineering and Safety Center (NESC) is building a composite crew module. NASA’s Orion crew module was picked as the pattern for the composites demo project, in part, to take advantage of the wealth of engineering data already developed by the Constellation program for NASA’s next crewed spacecraft. The NESC composites team has taken the basic size, shape, and other design elements of Orion, but is building a highly-modified version as a high-tech technology demonstrator.
When the NESC composites team is done, it will have gained hands-on design, build, and test experience in anticipation that future exploration systems may be made of composite materials.
Here are project details and progress to date.
Problem:
In 2006, the NESC studied the feasibility of a composite crew module for the Crew Exploration Vehicle. The overall finding indicated that a composite crew module was feasible but that a detailed design would be necessary to quantify technical characteristics, particularly in the area of mass and manufacturability. Accordingly, the NASA Administrator, Associate Administrator for Exploration, and the Constellation Program manager chartered the NESC to design, build, and test a composite crew module with the goal of developing a network of engineers within the agency with hands on experience using composites on a habitable spacecraft design.
NESC Contribution:
The NESC Composite Crew Module Project Objective is to design, build, and test a structural test article of the Crew Exploration Vehicle Crew Module primary structure. The project was chartered in January of 2007, with a goal of delivering a test article for structural testing in July of 2008, 18 months after project initiation. The project team is a partnership between NASA and industry and includes design, manufacturing, and tooling expertise. Partners include civil servants from ARC, DFRC, GRC, GSFC, JSC, JPL, KSC, LaRC, MSFC, Air Force Research Laboratories and contractors from Alcore, Alliant Technologies, Bally Ribbon Mills, Collier Corporation, Genesis Engineering, Janicki Industries, Lockheed Martin, and Northrop Grumman.
Result:
The composite crew module team operates in a predominantly virtual environment electronically connecting participants across the geographic span. During the design phase, the team co-located at GSFC for 1 or 2 weeks approximately every 6 to 8 weeks. The team constrained the design to match interfaces with the current Orion crew module including the internal packaging constraints that utilize a backbone for securing internal components. During the first 2 months of the effort, the team evaluated design solutions and focused in on a design that utilizes predominantly aluminum honeycomb sandwich and solid laminate material systems. One unique feature of the composite crew module design was the integration of the packaging backbone structurally with the floor and walls of the pressure shell. This provides a load path that accommodates load sharing with the heatshield for water landing load cases. Another unique feature of the composite design is the use of lobes between the webs of the backbone. This feature puts the floor into a membrane type loading resulting in a lower mass solution. Connecting the floor to the backbone, and placing lobes into the floor resulted in mass savings of approximately 150 lbs to the overall primary structure design. The design is constructed in two primary parts - an upper and lower pressure shell. The two halves are joined together in an out of autoclave process to enable subsystem packaging of large or complex subsystems if deemed beneficial by the project. The initial design concepts were reviewed by an independent review panel in March 2007, followed by another independent review of the preliminary design in June 2007. The project conducted building block testing of critical areas and the results of the building block testing were used to validate critical assumptions for the final design. The detailed design was reviewed again in December 2007 by an independent review panel and based on the review, proceeded into the manufacturing phase of the project. A manufacturing readiness review was conducted in May 2008 and provided independent feedback on the detailed manufacturing instructions for the various components of the design. Fabrication of the upper and lower pressure shells began in February 2008, and post cure assembly operations started in May 2008. The current project plan is to statically test the upper and lower shells individually; to verify that the analysis models predict the response of the structure under load; and then to join the two halves together and repeat the static tests with internal pressure. Testing on the upper shell is currently scheduled to occur at LaRC in October 2008.
Findings to date
Design Findings
* Non-autoclave splice allows concurrent fabrication, assembly, and integration of major structural components and subsystems and provides lower cost cure tooling option
* Membrane lobed floor integrated with backbone subsystem packaging feature offer weight savings (~ 150lbs) through complex shapes enabled by composites
* State of the art Pi-preforms leveraged from DoD offer robust orthogonal composite joints
* Honeycomb design approach combined with mature secondary attachment technology provides flexibility and robustness in secondary attachment locations
* Inner mold line tooling offers opportunity to optimize or change design through tailoring of layups or core density, as loads and environments change with program maturation
* Composite solutions offer lower part count resulting in a lower drawing count (~47) which helps reduce overall life cycle costs
* Estimated mass based on March 2007 loads, environments, and interfaces:
* PDR (20% WGA) = 291 lbs (metallics) + 1149 lbs (composites) = 1441 lbs total
* CDR (12% WGA) = 386 lbs (metallics) + 944 lbs (composites) = 1330 lbs total
* MR (~4 % WGA) = 459 lbs (metallics) + 1005 lbs (composites) = 1464 lbs total
* Note: at MR - margins were increased in metallics to push test article failures to composites
Materials Findings
* Leveraged existing material databases, by using IM7/977-2 fiber and resin, a mature material system with extensive government and industry experience
* Building block program accelerated by emphasis on element level testing over materials level (lamina/laminate)
* Flight qualification gap not expected to change design
* Backfill materials level coupon data to substantiate literature generated design allowable and design rules
* Additional element level testing to validate environmental effects and off-nominal manufacturing processes
* Demonstrate life with credible damage and off nominal configuration per MSFC 3479
Analysis Findings
* Comprehensive analysis of entire structure
* Numerous (>160) load cases that envelope March 2007 flight environment
* Numerous (>15) analytical models using various modeling techniques with overlaps to verify results
* Element testing confirmed failure mode and failure load predictions
* Thermal and dynamic differences from aluminum being investigated; preliminary estimates do not indicate that composite create any system level issues
* Schedule constraints required extensive use of engineering experience from other flight vehicles backed up by detailed analysis
Manufacturing and Tooling Findings
* Integrated electronic process flow exists between Design, Manufacturing, and Inspection via CAD, FiberSIM, flat patterns, laser projection, layup, inspection
* Proven mature composite manufacturing processes using autoclave, oven, hand layup, with composite tooling
* Part specific process development was applied to manage manufacturing risk
* Minimal (< 44) cataloged tools for the entire composite crew module primary structure
* Total touch labor for manufacturing engineering test unit of primary structure ~6000 hours
* Affordable (<$1M) and quick (< 5 months) state of the art, precision, autoclave, multi-cycle cure tooling for full scale pressure shell
Non-Destructive Examination Findings
* Mature commercially available inspection equipment; IR thermography, ultrasound, and X-ray
* 100% non-destructive inspection currently expected for primary structure
* Documented inspection criteria consistent with material, analysis, and design assumptions
Test and Evaluation Findings
* All element tests needed to preserve critical path have been completed
* Additional tests to be conducted as needed to verify manufacturing processes
* Component test fixture, design, analysis completed with fabrication underway
* Full scale test design and analysis underway
http://www.nasa.gov/images/content/272383main_pict%201.jpg
http://www.nasa.gov/images/content/272552main_pict%2010.jpg
http://www.nasa.gov/images/content/272560main_pict%2012.jpg
Una buona serie (http://www.boston.com/bigpicture/2009/02/progress_on_nasas_constellatio.html) di immagini riguardanti lo sviluppo di Constellation:
http://cache.boston.com/universal/site_graphics/blogs/bigpicture/ares_02_16/a05_CEV-heatshield.jpg
http://cache.boston.com/universal/site_graphics/blogs/bigpicture/ares_02_16/a30_2007-02820.jpg
http://cache.boston.com/universal/site_graphics/blogs/bigpicture/ares_02_16/a07_2009-1572.jpg
http://cache.boston.com/universal/site_graphics/blogs/bigpicture/ares_02_16/a24_306074.jpg
non avrei mai detto che il Launch Abort System fosse così grande...è davvero una bella supposta! :D
Rispondo di qua visto che è la discussione più adatta.
Certo che se cancellano Ares I son cazzi.... cmq io propenderei pià per un super-EELV, ma è ancora presto per fare ipotesi.
Le soluzioni che prevedono solo EELV hanno il "problema" che rendono inutile tutta l'infrastruttura legata allo Shuttle, con conseguenti perdite rilevanti di posti di lavoro.
Comunque si, finché non c'è un nuovo amministratore è presto per decidere.
Il TG Leonardo parla (http://www.rai.tv/dl/RaiTV/programmi/media/ContentItem-50a72e85-0b43-4670-a7db-5b9bc9b4ceba.html?p=0) di Athlete (minuto 4 circa).
Fonte (http://www.forumastronautico.it/index.php?topic=10353.msg100788#new)
Selezionato il materiale dello scudo termico di Orion:
NASA SELECTS MATERIAL FOR ORION SPACECRAFT HEAT SHIELD
HOUSTON -- NASA has chosen the material for a heat shield that will
protect a new generation of space explorers when they return from the
moon. After extensive study, NASA has selected the Avcoat ablator
system for the Orion crew module.
Orion is part of the Constellation Program that is developing the
country's next-generation spacecraft system for human exploration of
the moon and further destinations in the solar system. The Orion crew
module, which will launch atop an Ares I rocket, is targeted to begin
carrying astronauts to the International Space Station in 2015 and to
the moon in 2020.
Orion will face extreme conditions during its voyage to the moon and
on the journey home. On the blistering return through Earth's
atmosphere, the module will encounter temperatures as high as 5,000
degrees Fahrenheit. Heating rates may be up to five times more
extreme than rates for missions returning from the International
Space Station. Orion's heat shield, the dish-shaped thermal
protection system at the base of the spacecraft, will endure the most
heat and will erode, or "ablate," in a controlled fashion,
transporting heat away from the crew module during its descent
through the atmosphere.
To protect the spacecraft and its crew from such severe conditions,
the Orion Project Office at NASA's Johnson Space Center in Houston
identified a team to develop the thermal protection system, or TPS,
heat shield. For more than three years, NASA's Orion Thermal
Protection System Advanced Development Project considered eight
different candidate materials, including the two final candidates,
Avcoat and Phenolic Impregnated Carbon Ablator, or PICA, both of
which have proven successful in previous space missions.
Avcoat was used for the Apollo capsule heat shield and on select
regions of the space shuttle orbiter in its earliest flights. It was
put back into production for the study. It is made of silica fibers
with an epoxy-novalic resin filled in a fiberglass-phenolic honeycomb
and is manufactured directly onto the heat shield substructure and
attached as a unit to the crew module during spacecraft assembly.
PICA, which is manufactured in blocks and attached to the vehicle
after fabrication, was used on Stardust, NASA's first robotic space
mission dedicated solely to exploring a comet, and the first sample
return mission since Apollo.
"NASA made a significant technology development effort, conducted
thousands of tests, and tapped into the facilities, talents and
resources across the agency to understand how these materials would
perform on Orion's five-meter wide heat shield," said James Reuther,
the project manager of the study at NASA's Ames Research Center at
Moffett Field, Calif. "We manufactured full-scale demonstrations to
prove they could be efficiently and reliably produced for Orion."
Ames led the study in cooperation with experts from across the agency.
Engineers performed rigorous thermal, structural and environmental
testing on both candidate materials. The team then compared the
materials based on mass, thermal and structural performance, life
cycle costs, manufacturability, reliability and certification
challenges. NASA, working with Orion prime contractor Lockheed
Martin, recommended Avcoat as the more robust, reliable and mature
system.
"The biggest challenge with Avcoat has been reviving the technology to
manufacture the material such that its performance is similar to what
was demonstrated during the Apollo missions," said John Kowal,
Orion's thermal protection system manager at Johnson. "Once that had
been accomplished, the system evaluations clearly indicated that
Avcoat was the preferred system."
In partnership with the material subcontractor, Textron Defense
Systems of Wilmington, Mass., Lockheed Martin will continue
development of the material for Orion. While Avcoat was selected as
the better of the two candidates, more research is needed to
integrate it completely into Orion's design.
Uno scudo termico di test in AVCOAT si può vedere in questa immagine:
http://cache.boston.com/universal/site_graphics/blogs/bigpicture/ares_02_16/a05_CEV-heatshield.jpg
gabi.2437
08-04-2009, 17:15
Tutto molto interessante
Mi chiedo quanto ci metterà quell'ultima foto a finire (ovviamente in formato 20x20pixel e tutta sfocata eh...) come disco volante in mano alla nasa
Frank1962
08-04-2009, 18:45
minkia come siamo arretrati:mbe: :mbe:
l'ares V sara' lanciato verso il 2018
e non sara molto diverso in quanto a prestazioni dal saturn V
(131 T contro 118 T)
MA PARLIAMO DI UN VETTORE VECCHIO DI OLTRE 50 ANNI :eek: :eek:
se poi lo accositamo al razzo russo ENERGIA il confronto è impietoso (175 T)
l'europa poi fa una figuraccia con il suo ariane 5 ( 21 T)
mi rattrista essere nato in un epoca cosi scarsa di evoluzioni (di questo passo nemmeno i figli dei miei filgli vedranno lo sbarco su marte...ED HO APPENA 28 ANNI)
http://en.wikipedia.org/wiki/Comparison_of_heavy_lift_launch_systems
In questa tabella, parlando di LEO, sembra che l'ARES V possa portar su 188 tonnellate a fronte di "sole" 100 del vecchio Energia.
Tutto molto interessante
Mi chiedo quanto ci metterà quell'ultima foto a finire (ovviamente in formato 20x20pixel e tutta sfocata eh...) come disco volante in mano alla nasa
Vedere immagini della sonda Voyager originale (quella diretta verso Marte lanciata con un Saturn V) :O
http://en.wikipedia.org/wiki/Comparison_of_heavy_lift_launch_systems
In questa tabella, parlando di LEO, sembra che l'ARES V possa portar su 188 tonnellate a fronte di "sole" 100 del vecchio Energia.
Il dato di 175 tonnellate per Energia era già stato spiegato/confutato sopra (versione powerpoint mai realizzata).
Per Ares V il dato di 188 tonnellate dovrebbe essere giusto, anche se la situazione è ancora parecchio fluida riguardo a cosa si farà di preciso (vedi soluzione alla DIRECT con doppio lancio di due vettori da circa 100 tonnellate).
This week, engineers from across NASA and partner contractors gathered at Marshall Space Flight Center to analyze designs to minimize vibrations in the Ares I rocket. During this three-day meeting of the minds, participants showcased tremendous progress toward understanding the physics of thrust oscillation, updates to several candidate mitigation solutions, and results from early subscale testing of candidate hardware. This was not a decision-making session, but an opportunity for engineers and managers to scrutinize proposed solutions.
Thrust oscillation may be felt for a few seconds at the end of first-stage powered flight. Also called “resonant burning,” thrust oscillation is a phenomenon in all solid propellant rockets forcing vibrations through the entire structure, in the case of Ares I, that includes the Orion crew module.
To date, several promising mitigating systems have been identified to counteract vibrations stemming from thrust oscillations. Two primary options are actively under development:
Isolators:
Isolators are C-shaped springs that could be placed between the Ares I frustum and interstage to “detune” the vehicle resulting in less vibration for the crew while maintaining vehicle control stability. The design is based on an existing “soft-ride” technology developed by CSA Engineering, Mountain View, Calif. “Soft ride” technology, which has flown on 17 spacecraft, has been typically placed inside the payload shroud to protect payloads from oscillations. The current Ares design incorporates a ring of 136 C-shaped springs and attach hardware into an isolator module which measures 18.5 inches in height. ATK Launch Systems, located near Brigham City, Utah, is the Ares I prime contractor and is working aggressively with CSA Engineering to mature the isolator design. Moving forward, engineering teams will continue to evaluate the performance of the C-shaped springs and supporting hardware. Engineering design units have been tested on a “shaker stand” which simulates the thrust oscillation loads and demonstrated functionality and effectiveness of this system.
Tuned Oscillation Arrays:
An earlier active mitigation concept called Reaction Mass Actuators (RMA), has matured into a passive solution known as Tuned Oscillating Arrays (TOA). This system will be mounted inside the first stage aft skirt and includes an array of boxes that contain masses suspended on springs which absorb or soak up the vibration oscillation produced during first stage flight. Analysis of the aft skirt has indicated that the existing skirt design can support the TOA approach. Following the recent STS-119 shuttle mission, engineers conducted a fit check with TOA volume simulators and found the solution to be feasible in the existing aft skirt design. Next steps include finalizing bracket concepts to connect TOA boxes to the aft skirt and examining handling processes and equipment needed for ground support. The active RMA concept, which includes powered springs that actively cancel out the vibration, is on hold but available for restart if required later.
Two other alternative thrust oscillation strategies under study as risk mitigation to the baseline include:
A “dual plane” solution:
A dual plane solution would employ two rings of isolators, one located at the interstage/frustum interface and another between Orion and the Ares upper stage. Having redundancy of isolator rings may provide increased “detuning” capability to ensure the Orion does not respond to the oscillations of the first stage motor.
LOX damper:
Engineers are also evaluating a concept called a LOX damper, which uses the fundamental physical properties of liquids to leverage the kinetic energy in the movement of the existing liquid oxygen in the upper stage tank to dampen out vibrations. The devices, installed within the liquid oxygen tank, can engage the mass of the liquid propellant to generate momentum in the fluid itself to counter the vehicle acoustic response and disrupt oscillation. Engineers are evaluating the effectiveness and applicability of this design.
Data analysis:
In addition to discussing specific design solutions, the thrust oscillation team is pouring over existing ground and new flight test data captured from recent shuttle missions STS-126 and STS-119. During recent shuttle flights, sensors placed on both ATK-produced solid rocket boosters measured pressure oscillations, in addition to vibration measurements, on crew seats. Measurements are helping engineers anticipate the magnitude of thrust oscillations forces that may be expected on future Ares I flights.
NASA engineers and astronauts are also evaluating crew situational awareness under various vibration conditions in a simulator at the Ames Research Center. NASA is working to set the final requirements for acceptable crew vibrations – currently a 0.25g requirement that was developed during the Gemini era.
Next steps:
Testing of the isolators and TOA candidate mitigation hardware will march forward. NASA teams will capture additional data from future shuttle flights and from the upcoming test flight of Ares I-X to better understand the risk to the Ares I vehicle and the Orion capsule. Considering all information, NASA will finalize vehicle designs in a thrust oscillation preliminary design review which will define which system, or combination of systems, works best to minimize vibrations on the Ares I vehicle.
Interessante la soluzione che mira a usare l'ossigeno liquido del secondo stadio per contrastare le vibrazioni.
Ma sono circa 50 anni che si usano i razzi per mandare nello spazio oggetti, possibile che nessuno abbia pensato ad alternative?! :confused:
Ma sono circa 50 anni che si usano i razzi per mandare nello spazio oggetti, possibile che nessuno abbia pensato ad alternative?! :confused:
Se alludi ai problemi dell Ares I ne stanno incontrando perchè vogliono usare un primo stadio a combustibile solido.
Se invece parli in generale, allora il discorso cambia abbastanza..e bisogna considerare essenzialmente:
1) dove si vuole arrivare: LEO, Orbita geostazionaria, Luna, Marte?
2) quanti soldi ci sono a disposizione
3) quanti lanci prevedi di fare nell'arco di almeno 10 anni
Personalmente io rimpiango ancora la VentureStar..ma è un discorso affrontato già molte volte..
gabi.2437
10-04-2009, 15:14
Ma sono circa 50 anni che si usano i razzi per mandare nello spazio oggetti, possibile che nessuno abbia pensato ad alternative?! :confused:
Finchè non inventano il teletrasporto o si decidono a costruire l'ascensore spaziale...
Ma sono circa 50 anni che si usano i razzi per mandare nello spazio oggetti, possibile che nessuno abbia pensato ad alternative?! :confused:
Di alternative ne sono state studiate tante (http://en.wikipedia.org/wiki/Non-rocket_launch), però per ora i razzi rimangono l'unica opzione fattibile. Da un po' di tempo si parla dall'ascensore spaziale, ma le sfide da affrontare per realizzarlo rimangono ancora molte..
Rimanendo sui razzi riassumendo molto il discorso è tutto qui: per far calare i costi oltre un certo livello serve un RLV, che però diventa più economico dei lanciatori classici solo con un elevato numero di lanci. E non esiste un mercato che ne richieda un tale numero...
Edit: C'è l'altro (http://en.wikipedia.org/wiki/Project_Orion_%28nuclear_propulsion%29) Orion, che ha delle potenzialità enormi (si parla di Terra-Plutone-Terra in un anno), ma che è improponibile dal punto di vista politico.
Di alternative ne sono state studiate tante (http://en.wikipedia.org/wiki/Non-rocket_launch), però per ora i razzi rimangono l'unica opzione fattibile. Da un po' di tempo si parla dall'ascensore spaziale, ma le sfide da affrontare per realizzarlo rimangono ancora molte..
Rimanendo sui razzi riassumendo molto il discorso è tutto qui: per far calare i costi oltre un certo livello serve un RLV, che però diventa più economico dei lanciatori classici solo con un elevato numero di lanci. E non esiste un mercato che ne richieda un tale numero...
Edit: C'è l'altro (http://en.wikipedia.org/wiki/Project_Orion_%28nuclear_propulsion%29) Orion, che ha delle potenzialità enormi (si parla di Terra-Plutone-Terra in un anno), ma che è improponibile dal punto di vista politico.
Uhm moooolto interessane questo Orion, fa circa 40Km/s però costanti, oltre a problemi economici mi pare che ci siano dal punto di vista quantitavo riguardo al carburante fissile, sarebbe bello comunque spendere soldi in più.
Certo che se cancellano Ares I son cazzi.... cmq io propenderei pià per un super-EELV, ma è ancora presto per fare ipotesi.
Sembra che sia arrivato (http://www.nasaspaceflight.com/2009/04/study-eelv-capable-orion-role-griffin-claims-alternatives-fiction/) il tempo di farle..
EELV/Orion Study:
The Californian-based Aerospace Corporation has provided independent technical and scientific research, development, and advisory services to the space program for over 40 years.
They were approached by NASA to conduct a study on replacing Ares I with an EELV, focusing on the Delta IV-H. The ULA (United Launch Alliance) were asked to contribute a limited review of the technical elements of the study. However, they were not given access to the cost or schedule data that was to be used in the findings.
It is claimed the study was called for by Mr Griffin, in order to disprove growing references that an EELV could close the gap between shuttle retirement and the first manned flight of Orion (Orion 2), currently scheduled for March 2015 - although that date is currently based on a “zero confidence” schedule, pending a summit meeting to find solutions to funding and schedule disconnect issues, found during the ongoing PMR (Program Milestone Review) process.
The results for both the Delta IV-H and Atlas V-H are encouraging, and point towards large margins on both the ISS and Lunar Orion vehicle. However, that is only part of the story.
“ISS (requirement of 19.2 t). Delta IV-Heavy = 24.2 t. Atlas V Heavy = 25.4 t. Lunar (requirement of 21.8 t). Delta IV-H = 26.3 t. Atlas V-H = 27.3 t,” noted information acquired by L2.
The Delta IV-H numbers include use of the RS-68A, which is an upgraded version of the current RS-68 - currently undergoing testing and due to come into service in a few years time.
It is also noted that the ULA used the same ascent trajectory constraints as Ares I, such as the LAS (Launch Abort System) jet at Upper Stage Ignition (+30 sec, -30×100nmi injection).
The data did, however, point towards the ULA being required to optimize their current trajectory elements, although that would be refined after an “apples-to-apples” comparison with Ares I - which was the focus of the study.
On costs, information notes a new, dedicated launch pad (LC-37A) for Delta IV-H - if required - would cost around $750M, although sources claim it would be a lower dollar figure. An alternative Vehicle Integration Building (VIB) and Mobile Launch Platform (MLP) for Atlas V-H on LC-41 would cost around $350M.
It would also cost another $350m and 30 months to finish non-recurring work and field Atlas V-H.
The issue of “Black Zones” - often cited by Constellation managers as a negative issue with the EELVs - has been closed, and is not deemed to be a restrictive issue for “human rating” the vehicles.
However, ULA’s estimate of $400M to human rate the Delta IV-H - and a figure of around $200m to carry out the same process on an Atlas V-H - are deemed as “wildly off base” by NASA sources, who claim it would take many billions and many years to satisfy NASA ground rules. Those sources refused to expand on what their larger estimates are based on.
A major negative point for switching to EELV relates to the NASA workforce, especially at the Marshall Space Flight Center (MSFC), and other “shuttle derived” centers and contractors.
Currently, a percentage of the shuttle workforce have - or will be - transitioned over to Constellation, although several thousand will still lose their jobs at the end of the shuttle program. A switch to EELV would see the job losses rise dramatically, according to NASA sources, who add it would also destroy the skill set.
It is also claimed that either an Atlas V-H or a Delta IV-H would be ready to launch with the existing Orion until 2014, which is later - but potentially more realistic - than previous claims reported in the media.
A large gap in US manned space flight would still exist without shuttle extension, although the current five year gap until Ares/Orion’s IOC (Initial Operating Capability) is unstable, and likely to grow, even if the upcoming PMR summit finds short term solutions to the funding shortage and schedule disconnects.
Il più grosso punto in sospeso di una soluzione solo EELV rimane quello dei posti di lavoro: su quell'aspetto DIRECT (che prevede comunque la certificazione per il volo umano di uno dei due EELV) è decisamente attraente.
Recente post di Chris Bergin*:
Lori Garver was to be announced as the new Admin yesterday, but it was either postponed to today or she's decided against the job (we heard a "woman" had turned down the job, but could have been someone else).
Bolden is out, so top name is Lori Garver regardless. And whatever happens, she will be central to a complete overhaul of the Agency (more on that soon).
*admin di nasaspaceflight, chi segue il sito sa che è la sua affidabilità è decisamente elevata.
Review (http://www.nasaspaceflight.com/2009/04/refining-constellations-roadmap-2015-hanley-proposes-major-changes/) in vista per Constellation (ne stanno definendo le specifiche):
Upcoming Reviews and Studies:
The Constellation Program (CxP) is heading towards a crucial period of its early life, with several studies being set up at various levels to determine the forward plan for both NASA and Constellation.
Lori Garver, former NASA Associate Administrator of Policy and Plans, and space policy adviser to Democratic politicians - who was expected to named the new NASA Administrator earlier in the week according to sources - will lead a major content review of the Constellation Program, in an attempt to find a way forward to get the schedule “back” into the March, 2015 timeframe for the debut manned flight of Orion.
General Peter Worden, Director of NASA’s Ames Research Center (ARC), will also spearhead a NASA review, which is deemed to have “wide scope” - likely to include shuttle extension - while a main body “Blue Ribbon Panel” will work with the Office of Science and Technology Policy (OSTP) in Washington, possibly overseeing all of the studies.
Specifics for the reviews - to be announced in May - are still being built, although sources are noting a 60 day study on the launch vehicles will be undertaken, akin to a updated version of the Exploration Systems Architecture Study (ESAS), while other sources claim that the concentration will be focused soley on the current architecture that centers around the Ares launch vehicles.
Ms Garver will be involved with the content review that is part of the schedule summit - called for by Constellation managers during the opening process of the 2009 PMR (Program Milestone Review or Program Manager’s Recommend) - which found serious schedule “disconnects” and funding issues, threatening to push the Constellation schedule out by up to another 18 months.
At the conclusion of the content review, Constellation managers will create the PMR 09 Rev1 schedule, which will conclude with a formal budget submission to NASA HQ, and ultimately the Office of Management and Budget (OMB).
It is not yet known if the results of the Aerospace Corp study - which evaluated the potential for launching Orion on the Delta IV-Heavy or Atlas V-Heavy - will be used in the upcoming studies, though this would likely play a part if a new ESAS style review is involved.
Other sources have also made references towards a review of the downstream direction of NASA’s human space flight program, with growing interest in a “bold and different” forward plan, which involves a manned mission to an asteroid (NEO mission outline video on L2), prior to the return to the moon.
It is claimed the reviews will be a major milestone in the immediate and future direction of NASA.
nel frattempo è stato proposto un piano per riportare la IOC di Orion al 2015:
However, some decisions have already been made, including the move to a four man crew on Orion for both ISS and Lunar versions of the vehicle - as previously reported by this site in March. The option of modifying Orion back to a six person crew in the future will be protected. The 9.3 diameter nozzle - for an increase in Ares I performance - is also being removed from the table.
Delete Ares I-Y and replace with the appropriate test strategy. The test strategy should plan for Orion 2 and subsequent vehicles to be “Crew Ready” vehicles. That is, they can be crewed flights if preceding tests were successful and the program risk posture supports it,” Mr Hanley listed.
“Do not implement SI units. Make FOC one flight after IOC (assumes ATLAS (LIDS-APAS adapter allowing Orion to dock at the Pressurized Mating Adaptor) is flown to ISS on HTV). Keep Lunar SRR (System Requirement Review) on track - make this a minimalist SRR.
“Seek to find maximum commonality between Orion ISS and lunar configurations. Get as close as technically reasonable to a common CM (Crew Module) and SM (Service Module) configuration for both missions. But this must be traded against:
“Remove Lunar DRM from Orion’s post PDR work plan. Orion CDR should be a CDR for Block I. We will do a delta CDR for Block 2 at the appropriate time downstream. Instead, Orion work on Lunar should be at the SRR requirements validation level.
“Defer certification to Lunar natural and induced environments to Block 2 - plan to leverage Altair component qual program and retrofit upgraded components to Orion for its Block 2 qual, which is already in the budget in the late teens.
“Defer AR&D as a verifiable requirement. Do not redesign to take sensors or capability out. Assess using Orion 1 as part of the project qualification. If technically sound options are identified that differ from CEQATR (Constellation Environmental Qualification and Acceptance Testing Requirements) requirements (and are cheaper/quicker), bring forward for evaluation.
“Reduce/eliminate procurement of any non-block 1 Orion components, including radiation tolerant electronic parts. Defer the 144 hour unpressurized lunar return requirement for block 1, if it allows cost/schedule relief Scrub C3I capabilities to determine the minimum necessary for the ISS configuration, and only implement those.
“Accept Net Habitable Volume we have for IOC, as long as the operability assessments already planned continue to show acceptable results. Eliminate ATLAS on top of Orion. Plan on this being delivered to ISS by the HTV. Eliminate all work on the Orion/ATLAS unique configuration
“Shift program approach such that we lean towards accepting placards vs. making design changes. This will still need to be evaluated on a case by case basis to determine acceptability, but bottom line is the program is willing to accept placards within reason. Defer GPS on Ares if it can be negotiated with the range.
“Delete First Stage reuse if that is shown to be a cost improvement. May include flying as an engineering evaluation system for a couple of flights, but not maintaining infrastructure or doing a full recovery system qual program.
“Instead of imposing Data Architecture requirements, release guidelines or suggested standards. Ask projects/contractors for assessment to these standards vs. verification to them.
“Relax anthropometric requirements where it saves cost and schedule in verification and qualification. Eliminate reuse of Orion hardware where it would save cost or schedule in component or system qual. Grow toward reuse after flight test program if positive life cycle cost trades exist.
“Implement HSIR (Human Systems Integration Requirements) verification by inspection/review where appropriate. Post Orion PDR, defer any Orion design work to incorporate UPC (assuming that this allows design simplification). Defer amine swing bed on Orion Block 1 and use LiOH. Provide clear path for a block 2 upgrade.”
+Benito+
24-04-2009, 21:56
iscritto :)
Nuovo amministratore(ice) della NASA* (prima donna ad occupare quel ruolo):
Pare che i giochi siano fatti: Lori Garver al vertice dell'Agenzia e Pete Worden il vice.
Fonte (http://www.forumastronautico.it/index.php?topic=10569.msg103237#msg103237)
*non è ancora confermato ufficialmente.
"Baseball cards" (http://forum.nasaspaceflight.com/index.php?topic=15541.msg397630#msg397630) del Jupiter 246 nelle varie configurazioni. Interessanti anche queste prospettive di riduzione dei costi:
One of the other options which we have been investigating to improve LOM/LOC and costs is the possibility of deleting the SRB's TVC system entirely and simply using the TVC on the Core engines to provide all of the control authority.
Our guys at MSFC tell us that we have plenty of control authority to do it, although we are still checking a few particular scenario's which we want to be sure about.
If we could delete all of the SRB/TVC subsystems it would remove all of those as a source of potential failures during ascent and would reduce the mass of the SRB's a little too, which buys us more payload to orbit.
But perhaps the most interesting part of it is that a remarkably large portion of the costs for the SRB's is in the TVC system, so deleting all those sub-systems would make for some substantial savings on every flight -- enough, by all accounts, to completely offset the higher costs of the SSME's vs. the RS-68's!
Ross.
E' ufficiale (http://www.spaceref.com/news/viewpr.html?pid=28150):
INDEPENDENT BLUE-RIBBON PANEL WILL DELINEATE OPTIONS
The Obama Administration today announced the launch of an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. The review will be conducted by a blue-ribbon panel of experts led by Norman Augustine, the former CEO of Lockheed Martin, who served on the President’s Council of Advisors on Science and Technology under Democratic and Republican presidents and led the 1990 Advisory Committee on the Future of the U.S. Space Program and the 2007 National Academies commission that
produced the landmark report, Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future, as well as a number of other high-profile national commissions.
The "Review of United States Human Space Flight Plans" is to examine ongoing and planned National Aeronautics and Space Administration (NASA) development activities, as well as potential alternatives, and present options for advancing a safe, innovative, affordable, and sustainable human space flight program in the years following Space Shuttle retirement. The panel will work closely with NASA and will seek input from Congress, the White House, the
public, industry, and international partners as it develops its options. It is to present its results in time to support an Administration decision on the way forward by August 2009.
“President Obama recognizes the important role that NASA’s human space flight programs play in advancing scientific discovery, technological innovation, economic strength and international leadership,” said John P. Holdren, Assistant to the President for Science and Technology and Director of the Office of Science and Technology Policy. “The President’s goal is to ensure that
these programs remain on a strong and stable footing well into the 21st Century, and this review will be crucial to meeting that goal.”
In a letter to Acting NASA Administrator Christopher Scolese asking him to undertake the review, Holdren noted that it is prudent for the new Administration to obtain a fresh assessment of America’s human space flight program given its scale and scope—and especially given its importance for scientific and technological innovation and discovery.
Scolese expressed confidence that the review would serve the nation, NASA, and its employees well. “The thousands of workers who have given so much over the years to bring human space flight to where it is today deserve nothing less than a full assurance that their commitment will be applied in the smartest and most practical ways,” Scolese said. “I appreciate the strong support that the President and Dr. Holdren have for NASA’s programs—including our human space flight program—and I look forward to working with Norm, the panel, and the
Administration to ensure that NASA remains on the best path as it moves forward.”
Scolese emphasized that work on Constellation will continue while the review is underway and that workforce issues will be an important factor assessed by the panel as it considers various options.
The review panel will assess a number of architecture options, taking into account such objectives as: 1) expediting a new U.S. capability to support use of the International Space Station; 2) supporting missions to the Moon and other destinations beyond low Earth orbit; 3) stimulating commercial space flight capabilities; and 4) fitting within the current budget profile for NASA exploration activities. Among the parameters to be considered in the course of its review are crew and mission safety, life-cycle costs, development time, national space industrial base impacts, potential to spur innovation and encourage competition, and the implications and impacts of transitioning from current human space flight systems. The review will consider the appropriate amounts of R&D and complementary robotic activity necessary to support various
human space flight activities, as well as the capabilities that are likely to be enabled by each of the potential architectures under consideration. It will also explore options for extending International Space Station operations beyond 2016.
Members of the panel are to be named soon.
“It is an honor to be asked to lead this important human space flight review, and I am excited about working with my fellow panel members to examine these difficult, complex, and pressing questions,” said Augustine, a former aerospace industry executive who is a recipient of the National Medal of Technology, the Joint Chiefs of Staff Distinguished Public Service Award, the Department of Defense's Civilian Distinguished Service Medal, and has served as chairman of the American Red Cross and President of the Boy Scouts of America.
“I am a believer in the value of this nation’s human space flight activities,” Augustine said. “And we will do everything we can to provide the information needed to help the country maintain the spectacular arc of progress that NASA has fueled for five decades.”
OSTP was created by Congress in 1976 to serve as a source of scientific and technological analysis and judgment for the President with respect to major policies, plans, and programs of the federal government. Specifically, OSTP is authorized to:
- Advise the President and others within the Executive Office of the President on the impacts of science and technology on domestic and international affairs
- Lead interagency efforts to develop and implement sound science and technology
policies and budgets
- Work with the private sector to ensure that federal investments in science and
technology contribute to economic prosperity, environmental quality, and national security
- Build strong partnerships among the federal government; state and local governments; other countries; and the scientific community
- Evaluate the scale, quality, and effectiveness of the federal effort in science and technology.
Annunciati i membri del comitato che valuterà se il programma manned della NASA sta seguendo la strada "giusta":
NASA ANNOUNCES MEMBERS OF HUMAN SPACE FLIGHT REVIEW COMMITTEE
WASHINGTON -- NASA announced Monday the members of the Review of U.S.
Human Space Flight Plans Committee. They are:
- Norman Augustine (chair), retired chairman and CEO, Lockheed Martin
Corp., and former member of the President's Council of Advisors on
Science and Technology under Presidents Bill Clinton and George W.
Bush
- Dr. Wanda Austin, president and CEO, The Aerospace Corp.
- Bohdan Bejmuk, chair, Constellation program Standing Review Board,
and former manager of the Boeing Space Shuttle and Sea Launch
programs
- Dr. Leroy Chiao, former astronaut, former International Space
Station commander and engineering consultant
- Dr. Christopher Chyba, professor of Astrophysical Sciences and
International Affairs, Princeton University, and member, President's
Council of Advisors on Science and Technology
- Dr. Edward Crawley, Ford Professor of Engineering at MIT and
co-chair, NASA Exploration Technology Development Program Review
Committee
- Jeffrey Greason, co-founder and CEO, XCOR Aerospace, and vice-chair,
Personal Spaceflight Federation
- Dr. Charles Kennel, chair, National Academies Space Studies Board,
and director and professor emeritus, Scripps Institution of
Oceanography, University of California, San Diego
- Retired Air Force Gen. Lester Lyles, chair, National Academies
Committee on the Rationale and Goals of the U.S. Civil Space Program,
former Air Force vice chief of staff and former commander of the Air
Force Materiel Command
- Dr. Sally Ride, former astronaut, first American woman in space, CEO
of Sally Ride Science and professor emerita at the University of
California, San Diego
Norman Augustine will chair the independent review of U.S. human space
flight plans. During the course of the review, the panel will examine
ongoing and planned NASA development activities and potential
alternatives in order to present options for advancing a safe,
innovative, affordable and sustainable human space flight program
following the space shuttle's retirement. The committee will present
its results in time to support an administration decision on the way
forward by August 2009.
"I look forward to working with the members of the committee to assist
in defining the future U.S. human space flight program," Augustine
said. "The members offer a broad spectrum of professional
backgrounds, and we are all committed to offering sensible proposals
that will serve the White House and NASA in their deliberations."
Dr. W. Michael Hawes is leading the NASA review team that will provide
technical and analytic support to the committee. Hawes is NASA's
associate administrator for program analysis and evaluation. Philip
McAlister is the executive director of the committee and the
designated federal official.
The committee will hold several public meetings at different U.S.
locations. The first public meeting will take place June 17 from 9
a.m. - 5 p.m. EDT at the Carnegie Institution, located at 1530 P
Street NW in Washington. Topics on the agenda for the meeting include
previous studies about U.S. human space flight; national space
policy; international cooperation; evolved expendable launch
vehicles; commercial human space flight capabilities; and exploration
technology planning.
The Federal Register published a notice May 15 officially announcing
NASA's establishment of the Review of U.S. Human Space Flight Plans
Committee. The committee will operate according to the Federal
Advisory Committee Act.
NASA Acting Administrator Chris Scolese signed the charter for the
committee Monday, enabling it to begin operations. The charter can be
viewed at:
NASA Orion crew vehicle will use voice controls in Boeing 787-style Honeywell smart cockpit
By Rob Coppinger
NASA’s Orion crew vehicle’s smart cockpit will monitor the vehicle's health, use synthetic, enhanced and virtual vision systems, have advanced on-screen symbology and may eventually employ a talking computer.
The Lockheed Martin-built Orion will use a glass cockpit that is derived from Honeywell's Boeing 787 flight deck technology. Orion’s cockpit computers will carry out routine and repetitive system monitoring tasks, which Apollo-era astronauts had to do themselves.
Vehicle health management software is seen as key to automating this activity so the cockpit system only informs the astronauts, and ground control, about the spacecraft's status when necessary. While the Shuttle’s cockpit's screens are filled with data that astronauts have to interpret and act on, Orion’s displays will use graphics along with enhanced synthetic vision and additional flight related symbology.
The Orion’s symbology could include a pathway through the sky. There will also be software tools for astronauts to have enhanced situational awareness, which is the goal of the smart cockpit. NASA Ames Research Center is working on constraint based planning for Orion’s smart cockpit. Ames' exploration technology director’s senior advisor Anthony Gross says, “we’re trying to get [Clarissa] implemented on Orion but it will probably be a later version.” Clarissa is software that guides astronauts through procedures for operating or maintaining space vehicle systems using natural language interaction, talking, with the crew member via a headset. It has been tested on the International Space Station.
Fonte (http://www.flightglobal.com/articles/2006/10/06/209724/nasa-orion-crew-vehicle-will-use-voice-controls-in-boeing-787-style-honeywell-smart.html)
http://www-pao.ksc.nasa.gov/kscpao/images/medium/2009-3424-m.jpg (http://www-pao.ksc.nasa.gov/kscpao/images/large/2009-3424.jpg)
Sito (http://www.nasa.gov/offices/hsf/home/index.html) del comitato che valuterà il programma manned della NASA, nella pagina sono linkati anche i relativi account su Flickr e Twitter.
Da notare che è possibile inviare commenti/consigli alla commissione.
Un paio di artwork ben realizzati dal team di DIRECT:
http://www.launchcomplexmodels.com/Direct/graphics/jupiter-246_exploded.jpg
http://www.launchcomplexmodels.com/Direct/media/images/direct_at_launchpad_final_title.jpg
Chissà cosa decideranno mai..
p.s.
nel secondo artwork il vettore non sembra un po' "basso"? (è forse una versione solo per LEO/ISS con modulo di servizio minimale?)
+Benito+
11-06-2009, 13:30
Chissà cosa decideranno mai..
p.s.
nel secondo artwork il vettore non sembra un po' "basso"? (è forse una versione solo per LEO/ISS con modulo di servizio minimale?)
mi sembra proprio scalato, dovrebbe essere MOLTO più grande
Erythraeum
11-06-2009, 14:18
p.s.
nel secondo artwork il vettore non sembra un po' "basso"? (è forse una versione solo per LEO/ISS con modulo di servizio minimale?)
sì è la versione cargo senza secondo stadio per l'inserimento in traiettoria translunare
Chissà cosa decideranno mai..
E' un ottima domanda... è praticamente possibile di tutto, da un architettura basata sui soli EELV, Ares/EELV, DIRECT, qualche altra via di mezzo o che Ares alla fine è la scelta migliore nonostante i problemi.
p.s. nel secondo artwork il vettore non sembra un po' "basso"? (è forse una versione solo per LEO/ISS con modulo di servizio minimale?)
Si, è un Jupiter 130 che in sostanza è la versione dedicata alla ISS (o comunque alle missioni in LEO).
mi sembra proprio scalato, dovrebbe essere MOLTO più grande
Attenzione che non è un Ares V (che è decisamente più grosso).
Spiego meglio cosa propone DIRECT. L'architettura è basata su "2" razzi (il perché delle virgolette lo spiego dopo*):
- Jupiter 130
http://img23.imageshack.us/img23/935/indexphpactiondlattachtx.jpg
Massa verso la ISS: circa 67 tonnelate.
Massa verso LEO: 77.8 tonnellate.
Un External Tank dello stesso diametro di quello dello Shuttle modificato per l'uso "in linea" spinto da 3 SSME e abbinato agli SRB a 4 segmenti (gli stessi dello Shuttle), senza nessun secondo stadio.
- Jupiter 246
http://www.launchcomplexmodels.com/Direct/graphics/jupiter-246_exploded.jpg
Massa verso la ISS: 91.3 tonnelate.
Massa verso LEO: circa 100 tonnellate.
Il primo stadio è lo stesso del Jupiter 130 (con 4 SSME invece che 3), con l'aggiunta di un secondo stadio spinto da 6 RL-10B-2.
- Missioni
- Per le missioni verso la ISS basta un Jupiter 130. Grazie alla potenza in eccesso è eventualmente possibile portare carichi insieme ad Orion verso la ISS o sfruttarla per migliorare la sicurezza (un idea piuttosto semplice è un grosso serbatoio d'acqua che faccia da scudo in caso di problemi catastrofici al razzo)
- Per una missione lunare vengono lanciati 2 Jupiter 246 (uno porta Orion e Altair, l'altro viaggia "vuoto" per poter usare il secondo stadio come EDS per spingere Altair e Orion verso la Luna). Massa utile in TLI 79.1 tonnellate.
* i due modelli sono essenzialmente lo stesso razzo senza e con il secondo stadio (il primo stadio è sovradimensionato nel caso del 130, ma visto l'eccesso di capacità questo non incide in maniera rilevante sulle sue prestazioni).
Questo (http://www.launchcomplexmodels.com/Direct/media/video/STS_to_Jupiter-246.mov) video descrive ben la cosa.
http://www.launchcomplexmodels.com/Direct/documents/Baseball_Cards/J130-41.4000.08100_CLV_30x100nmi_51.6deg_090606.jpg
http://www.launchcomplexmodels.com/Direct/documents/Baseball_Cards/J246-41.4004.10050_CLV_090606.jpg
http://www.launchcomplexmodels.com/Direct/documents/Baseball_Cards/J246-41.4004.08001_EDS_090606.jpg
Interessante approfondimento (http://www.forumastronautico.it/index.php?topic=11063.0) sullo sviluppo dei seggiolini di Orion
Prosegue il lavoro della commissione. DIRECT fa parte delle opzioni che verranno/stanno venendo studiate nel dettaglio:
I actually managed to take a whole day off last Sunday, which if you know me, you would actually be quite shocked to hear! :)
Since then, the effort on this has just been at fever-pitch and isn't likely to slow down for a while, so I won't be around here much -- sorry.
I'd like to start just by saying thank-you to everyone who has e-mailed me or PM'd me recently. I have not been able to get back to everyone yet, but I have been keeping up-to-date with all the contacts and I thank everyone for their comments, suggestions, notifications and assistance so far and I look forward to more.
I note a few people have asked about our contacts with the committee. Obviously, I can't really talk about any details, but a little while ago we got confirmation that DIRECT was accepted as one of the options to be studied in detail. We are currently working on supplying technical information to the analysis, which will culminate in myself and Steve flying out to California at the end of next week to answer detailed questions in-person. In short: We're in and we're doing what needs to be done. That's all I'm going to say about that.
On a slightly different subject, I've spoken with John Shannon. He told me that before the hearing on the 17th June he was unaware of the DIRECT concept. I have made sure he is now a lot more familiar with it and more familiar with the NLS concept which it is based upon too. I'm continuing to follow-up and hope to meet with him again soon.
John Shannon (direttore del programma Shuttle) ha presentato questo (http://www.youtube.com/watch?v=xOnlAUpYWoc) alla commissione.
Qui (http://www.youtube.com/view_play_list?p=2D300CFF5BEBEDC0) ci sono i video di tutte le presentazioni iniziali.
http://images.spaceref.com/news/2009/oosidemount.atv.carrier.jpg
http://images.spaceref.com/news/2009/oosidemount.barge.jpg
In his 17 June 2009 presentation to the Review of U.S. Human Space Flight Plans Committee (aka the Augustine Committee) Shuttle Program manager John Shannon presented the Shuttle-derived or "Sidemount" Heavy Launch Vehicle concept. Since that time additional information on this concept has emerged. Due to its commonality with existing Space Shuttle systems (a prime selling point) use of existing payload carriers (MPLMs, external carriers) and other ISS program hardware (ESA's ATV) has been considered as a possible use in addition to its use for moon mission hardware. Indeed, done properly, one single flight of the sidemount HLV could probably supply the ISS for a year. Two concepts are shown. One (above) uses an ATV and two MPLMs or a mixture of MPLMs and external payload carriers. The other "barge" concept (below) uses a propulsion module and a mixture of MPLM and external payload pallets.
http://images.spaceref.com/news/2009/oosidemount.atv.carrier.jpg
http://images.spaceref.com/news/2009/oosidemount.barge.jpg
il "sidemount Heavy Launch Vehicle" sarebbe in sostanza lo Shuttle-C?
http://www.astronautix.com/lvs/shuttle.htm#Shuttle%20C
http://en.wikipedia.org/wiki/Shuttle_C
il "sidemount Heavy Launch Vehicle" sarebbe in sostanza lo Shuttle-C?
http://www.astronautix.com/lvs/shuttle.htm#Shuttle%20C
http://en.wikipedia.org/wiki/Shuttle_C
No, anche se sembrano simili ci sono importanti differenze:
- Shuttle-C usa 2 SSME, l'SD-HLLV 3.
- Shuttle-C prevede un intero equivalente della payload bay, l'SD-HLLV ha solo un fairing.
- Shuttle-C ha molti sistemi tipici dello Shuttle (OMS, sistema RCS a poppa) di cui l'SD-HLLV non ha bisogno.
- Shuttle-C, escludendo gli SRB arriva fino in orbita, l'SD-HLLV usa un qualche tipo di secondo stadio.
In generale Shuttle-C era stato ideato per completare lo Shuttle ed essere lanciato in "contemporanea" a livello di programmi. L'SD-HLLV è invece un sostituto.
Continuano gli incontri con i team dietro le varie proposte. Svolto quello di DIRECT:
We have completed the meeting with Aerospace Corp. It lasted nearly 4 hours. The meeting went very well, with the questioning being very thourough. These guys had clearly done their homework and knew what they were doing. I was also impressed by their level handed treatment of the data and their clearly neutral stance on the subject matter. We made our presentation and they asked their questions, which led to other places in the presentation, which led to other questions, etc, etc. We spent a lot of time comparing notes to clarify what our baseline actually is. We felt like we were participating in a professional problem solving meeting. Steve did a stirling job with the presentation, while he, Ross and I fielded questions as they arose. It actually felt like we were participating in a well run TIM.
We have been advocating for 3 1/2 years for an independant assessment on a level playing field. All 3 of us believe we actually got that today.
The 3 of us are going to go get a bite to eat, get a little rest and then begin to make our long way home. We are all extremely tired so you probably wont see us posting for a couple of days.
Cheers
anche qualche contatto non ufficiale:
John Shannon just contacted me and asked for another copy of my book from lulu.com. Apparently Wayne Hale "borrowed" the copy I sent Mr. Shannon. I need to make sure I re-read the STS-37 short-landing story. Wayne was the flight director and could have done thing differently. But, Wayne was probably the best flight director ever and I need to make sure I say this in my book.
Anyway, John agreed getting the crew on the top of the ET is the way to go (yeah!!), but he told me he wasn't sure NASA can afford it. Unlike Griffin, Horowitz, and Ivins in 2005, Mr. Shannon knows that an archticture that can be built within the budget will go down in flames.
This tells me team Direct needs to convince NASA they can afford Direct. Maybe a story on delta dollars to put the crew on top and the engines on the bottom. On the plus side, the abort system for on top is probably cheaper to design. You need to include changes to support systems to go inline. John mentioned to me this was a concern of his.
He is also very concerned about flight software development. While Direct will need more changes to flight software than side mount will, I think the team can sell Direct as being able to use "current" software. John's concern isn't so much things like changing gains in the autopilot because the engines have been moved, but more the timing issues of the software interface with the hardware. He has a vision of minimum change in this area. Team Direct can look at this as well. Maybe a software emulator of the GPCs running in a modern computer. I think the Orion computers and/or the computers designed for Shuttle Cockpit Avionics Upgrade can run an emulator to run GPC software.
I am going to bounce the idea off of Charlie Bolden for him to talk to team Direct. He may think it would be showing favor, but we can see.
Danny Deger
PWR Offers Shuttle Engine Alternative (http://www.aviationweek.com/aw/generic/story.jsp?id=news/Engine071509.xml&headline=PWR%20Offers%20Shuttle%20Engine%20Alternative&channel=space)
Pratt & Whitney Rocketdyne (PWR) says it could rapidly stand up an expendable space shuttle main engine (SSME) if the Obama administration decides to use a shuttle-derived throwaway heavy lifter as an alternative to the Ares I crew launch vehicle.
The company has told a White House panel reviewing human spaceflight options that it could have a sufficient number of SSMEs ready within a year using a combination of leftovers from the shuttle program and newly-built engines. It has also proposed developing a modified, lower-cost SSME as a follow-on, PWR President Jim Maser said July 14 at a Space Foundation roundtable in Washington.
Maser stressed that PWR is not advocating any particular launch vehicle architecture to the study panel, which is headed by former Lockheed Martin CEO Norman Augustine. "We're assuming any solution they choose would have some liquid propulsion in it ... We're ready to support any architecture they recommend," he says.
The idea of using an expendable shuttle-derived lifter was raised by shuttle program manager John Shannon at a public meeting of the Augustine commission last month (Aerospace DAILY, June 19). Maser says that if that option were selected, PWR will have 14 leftover SSMEs that are completely flight worthy. "Those 14 are already paid for, so for future budgets they're free," he says. Another engine that has been fully assembled but not tested, plus spare parts, could raise the total to 17.
The company also would manufacture additional engines using the existing SSME design while beginning work on a modified design that incorporates advances in the construction of nozzles and combustion chambers. That would be ready to go into production within 3-4 years. Maser estimates the modified SSME would cost two-thirds to four-fifths of the original model - depending on the number ordered - and would be "a little more expensive" than the company's RS-68 engine "but in that ballpark."
Maser says Rocketdyne also has briefed the Augustine panel on the status of its J-2X upper stage engine, which completed a critical design review last November and remains on schedule. "We could be going even faster, but because of funding restrictions and [other] priorities we've been asked to slow down a little bit and stretch our program out," he says. PWR is recommending that J-2X development continue, but has also told the Augustine panel that it could develop a different-sized upper-stage engine if needed.
The Augustine panel is scheduled to deliver its recommendations by late August. Maser says any hope of getting a boost in funding for human spaceflight rests with the White House, which would have to lead the charge. But he is not optimistic that will happen. "All the indications we're getting from the executive branch is that funding is going to be pretty tight," he says.
But even if that is the case, the Obama administration can help by implementing a long-term space road map that is consistent and predictable so companies can plan for hiring and R&D investments, Maser says. He notes that a push-out of the massive Ares V cargo launch vehicle would open a development gap that will make it difficult for propulsion companies to retain skilled workers and capabilities. "Maintaining the critical skills to continue these developments through peaks and valleys is a real challenge for the industry," he says.
4chr
Se un SRB esplode tra 30 e 60 secondi dopo il lancio, l'abort rischia di essere non sopravvivibile (se la capsula rimane nell'area dei frammenti ad alta temperatura questi fonderebbero i paracaduti):
USAF 45th Space Wing Study: Capsule~100%-Fratricide Environments (Implications for NASA's Ares-1 and Crew) (http://www.spaceref.com/news/viewsr.html?pid=31792)
Estimate of Secondary Effects of the Solid Rocket Booster (SRB) Destruct Debris Environment on the Constellation Capsule
(Illustrated with the Titan IV-A20 Destruct of Comparable SRBs, Propellant Mass, and comparable MET of ~40 sec)
UNCLASSIFIED
Sean P. Stapf
Air Force Ejection Seat & Rocketry Analyst
45th Space Wing
Patrick Air Force Base, Florida
QUICK SUMMARY of RESULTS:
A) FRAG VELOCITY DISTRIBUTION. Propellant fragments expand...
- as a spherical "shell" (i.e. of comparable velocity magnitudes - leaving little distribution of propellant fragments within, or beyond, the "shell")
- At fairly "tight" ranges, from approximately 300-500 fps (some outliers, each side), with betas from ~20-700 lbm/sqft.
- Mass and count distributions comparable to the "FRAG" program, generated from studies such as the joint NASA/DOE/INSRP Explosion Working Group on the Titan 34D-9 and Challenger 51L.
B) CAPSULE ~100% FRATRICIDE by SECONDARY RADIATIVE WILTING of NYLON CHUTES The capsule will not survive an abort between MET's of ~30 and 60 seconds - as the capsule is engulfed until water-impact by solid propellant fragments radiating heat from 4,000F toward the nylon parachute material (with a melt-temperature of ~400F).
PURPOSE:
a) Re-Confirm Codes. Re-confirm predictive codes & values for solid propellant motor fragmentation, comparing results of the late-1980's joint NASA/DOE/INSRP Explosion Working Group (and related) analyses of solid propellant rocket debris (particularly applied to the Titan and NASA SRB's), and verifying that code accuracy continues into the later 1998 Titan A20 destruct at MET=40s.
b) Illustrate Capsule Abort Environment. Illustrate the effect of this solid propellant debris on the Constellation Capsule (particularly the thermalradiative temperature environment of ~4000F while attempting to recover the capsule by deployment of 400F-tolerant nylon parachutes - showing the "probability of hit" is not an indicator of fratricide. A Ph>0 indicates capsule has failed to egress the debris cloud, then thermal induces the Loss of Crew).
c) Velocity Distribution. Suggest values for a "distribution" of predicted uncertainty in debris velocities. Suggest the "credibility" of using velocity variability to justify capsule survival by the variability's "off-max" lowering of a probability of hit (Ph).
CONCLUSIONS:
* The 45th-Space Wing has reasonable assessments for solid propellant debris fragment masses, velocities, etc.
* The Ares-1 capsule, with an LAS, will 25 not survive an abort between MET's of ~30-60 seconds.
(High-Q is a risk from ~20-75 sec)
Il problema dovrebbe riguardare tutti i veicoli che fanno uso di SRB e in generale di propellenti solidi, non solo Ares I.
(NOTA. Questa news non vuol dire che non esistano soluzioni in grado di mitigare il rischio se implementate/sviluppate)
Se un SRB esplode tra 30 e 60 secondi dopo il lancio, l'abort rischia di essere non sopravvivibile (se la capsula rimane nell'area dei frammenti ad alta temperatura questi fonderebbero i paracaduti):
Il problema dovrebbe riguardare tutti i veicoli che fanno uso di SRB e in generale di propellenti solidi, non solo Ares I.
(NOTA. Questa news non vuol dire che non esistano soluzioni in grado di mitigare il rischio se implementate/sviluppate)
Mi pare che per la loro natura l' esplosione di una razzo a propellente solido sia un fatto raro o sbaglio... nell incidente del challenger quando esplose, i due SRB continuarono la loro corsa indisturbati
Mi pare che per la loro natura l' esplosione di una razzo a propellente solido sia un fatto raro o sbaglio... nell incidente del challenger quando esplose, i due SRB continuarono la loro corsa indisturbati
Nel caso del Challenger non c'è stata nessuna esplosione: si è distrutto a causa delle forze aerodinamiche quando è andato fuori assetto a causa del fallimento strutturale dell'ET. La nuvola che si vede è il propellente criogenico che si è sparso.
Comunque si: dovrebbe essere un evento raro, anche se visto che il LAS è un sistema di emergenza mi sembra comunque giusto preoccuparsene
jumpjack
18-07-2009, 13:41
Nel caso del Challenger non c'è stata nessuna esplosione: si è distrutto a causa delle forze aerodinamiche quando è andato fuori assetto a causa del fallimento strutturale dell'ET. La nuvola che si vede è il propellente criogenico che si è sparso.
Comunque si: dovrebbe essere un evento raro, anche se visto che il LAS è un sistema di emergenza mi sembra comunque giusto preoccuparsene
ho letto e riletto il risultato delle indagini e visto e rivisto il filmato... ma a me proprio non sembra che la navetta si sbricioli per via dell'aria, si vede chiaramente che diventa piu' "luminosa" man mano che "esplode" (?), e che tutto inizia da una "luce" sotto la pancia! :mbe: :confused:
boh.
ho letto e riletto il risultato delle indagini e visto e rivisto il filmato... ma a me proprio non sembra che la navetta si sbricioli per via dell'aria, si vede chiaramente che diventa piu' "luminosa" man mano che "esplode" (?), e che tutto inizia da una "luce" sotto la pancia! :mbe: :confused:
boh.
Quella sotto la pancia dello Shuttle dovrebbe (vado a memoria) essere la zona dell'intertank dell'ET che cede, mentre le altre combustioni locali del propellente.
Come prova della non esplosione c'è il fatto che se si fosse trattato di un esplosione la "cabina" dello Shuttle sarebbe stata ridotta in pezzi (uccidendo istantaneamente l'equipaggio), mentre invece è rimasta integra fino all'impatto con l'acqua.
+Benito+
19-07-2009, 21:40
Quella sotto la pancia dello Shuttle dovrebbe (vado a memoria) essere la zona dell'intertank dell'ET che cede, mentre le altre combustioni locali del propellente.
Come prova della non esplosione c'è il fatto che se si fosse trattato di un esplosione la "cabina" dello Shuttle sarebbe stata ridotta in pezzi (uccidendo istantaneamente l'equipaggio), mentre invece è rimasta integra fino all'impatto con l'acqua.
Quindi si è trattato di una combustione violenta a seguito della disponibilità di combustibile e comburente liberi in atmosfera (si è rotto l'ET) e non una esplosione? Cioè, posto che la causa primaria del fallimento è stata la fuoriuscita di gas caldi dall'SRB, il fallimento della missione c'è stato non perchè è esploso l'et in seguito all'effetto di questa cosa, ma perchè l'ET si è aperto distruggendo buona parte dell'orbiter e POI ha preso fuoco?
Anche a me sembra che l'orbiter sia stato distrutto dall' onda d'urto dovuta al repentino incendiarsi del propellente e non dall'azione delle forze aerodinamiche.
Quindi si è trattato di una combustione violenta a seguito della disponibilità di combustibile e comburente liberi in atmosfera (si è rotto l'ET) e non una esplosione?
Si.
Cioè, posto che la causa primaria del fallimento è stata la fuoriuscita di gas caldi dall'SRB, il fallimento della missione c'è stato non perchè è esploso l'et in seguito all'effetto di questa cosa, ma perchè l'ET si è aperto distruggendo buona parte dell'orbiter e POI ha preso fuoco?
Anche a me sembra che l'orbiter sia stato distrutto dall' onda d'urto dovuta al repentino incendiarsi del propellente e non dall'azione delle forze aerodinamiche.
La distruzione dell'orbiter non è stata causata direttamente dalla distruzione dell'ET; ma dalla perdita di assetto (provocata dal fallimento strutturale dell'ET e dalla grossisima disparità di spinta dovuta al fatto che un SRB si è messo a ruotare/staccato) che ha generato dei carichi aerodinamici non sopportabili dalla sua struttura.
In particolare la sequenza è:
- Decollo: fumo nero da uno degli o-ring dell'SRB di destra. Il fumo è segno che la "guarnizione" sono erosi/si stanno erodendo.
- A 37 secondi lo Shuttle incontra il vento in quota più forte dall'inizio del programma Shuttle. Gli stress dovuti a questi venti e alle necessarie correzioni mettono ulteriormente "sotto sforzo" l'o-ring.
- A 57 secondi inizia ad essere visibile un getto incandescente dall'SRB di destra.
- Il getto di propellente incandescente che esce dall'o-ring si infrange sull'ET.
- A 64 secondi è visibile il danneggiamento dell'ET che perde visibilmente idrogeno liquido.
- A 72 secondi il collegamento basso SRB destro-ET si rompe/sgancia dall'indebolito serbatoio dell'idrogeno liquido dell'ET.
- Venendo a mancare il collegamento inferiore l'SRB di destra ruota intorno a quello superiore.
- Fallimento strutturale del serbatoio dell'idrogeno liquido: la base dello stesso in pratica si stacca.
- La forza risultante dall'enorme rilascio di gas liquido spinge la parte rimante del serbatoio dell'idrogeno nella struttura dell'intertank, che è contemporaneamente colpita dall'SRB destro in rotazione (che danneggia anche la parte bassa del serbatoio dell'ossigeno).
- I gas rilasciati vaporizzano e bruciano in modo violento, ma non esplosivo.
- L'orbiter a causa dei carichi aerodinamici molto superiori a quelli di progetto va in pezzi.
Il team di DIRECT sta pensando ad una soluzione per il problema dei "detriti fiammeggianti":
Jesse,
Essentially what it does is pitch the Orion 'up' -- like a horse rider bringing up a horse to halt it more quickly -- instead of pitching it down in order to get it as far down range as possible.
What that does is allows all of the flaming debris to continue downrange while the Orion virtually 'stops' its horizontal movement.
The result seems to put at least 1,000ft between the CM and the nearest of the debris field while only requiring the standard Ares LAS hardware.
I'm not yet certain that 1,000ft would be enough clearance, but it looks like a potential solution. Of course, this is still only a very tentative result and Danny is working to refine his model even more right now, so we will see what happens then.
The worst possible case scenario is that we need an additional sustainer engine incorporated into the LAS to ensure the Orion goes as far downrange as necessary to always avoid the debris field. It might mass 1 or 2 or even 5 tons more, but we have plenty of spare performance margin available so it is still quite feasible.
E' solo un analisi del primo ordine con un modello non troppo raffinato e quindi non c'è niente di certo, ma è un idea interessante.
SFN:
Ares managers say October test flight should go on
BY STEPHEN CLARK
SPACEFLIGHT NOW
Posted: August 23, 2009
Managers in charge of an October flight test of NASA's new Ares rocket defended the merits of the $350 million launch Sunday, telling reporters the demo provides valuable experience for engineers, no matter what booster the agency uses to replace the retiring space shuttle.
http://www.spaceflightnow.com/ares1x/090823future/ares1x.jpg
"We have a very high confidence level that Ares 1-X is germane to NASA, period," said Bob Ess, the flight's mission manager. "No caveats."
The Ares 1-X vehicle, a 327-foot-tall rocket that nearly reaches the rafters of the mammoth Vehicle Assembly Building, is undergoing final checks before its scheduled Oct. 31 launch.
"It is something that we haven't done in 30 years. It has been an incredible learning opportunity for us to do something different than shuttle," Ess said.
The two-minute test flight will give designers of the Ares 1 rocket crucial data about the launcher's flight characteristics, according to NASA.
But the Ares 1 rocket, part of NASA's plan to return humans to the moon, is under the gun from a blue-ribbon presidential panel appointed by the White House to review the future of human space flight.
The Review of U.S. Human Space Flight Plans Committee, chaired by former aerospace executive Norman Augustine, is putting the final touches on a report to be submitted to the Obama administration by the end of this month.
The report will present several options to NASA and White House leadership, most of which cancel the Ares 1 rocket in favor of commercial crew delivery or continued shuttle operations.
Committee members have said the Constellation program, including the Ares 1, is not attainable in its current form under NASA's projected budget.
A decision by the White House is expected later this year.
The potential scrapping of the Ares 1 has led some to question the need for the Ares 1-X test, but officials maintained the flight has far-reaching objectives relevant to NASA's future.
"This teaches us a whole lot about how we model launch vehicles, not (just) Ares 1 launch vehicles, but launch vehicles. When we go from computer analysis programs, which we consider to be state-of-the-art, and then we supplement that with either a wind tunnel test or a structural test, the one thing that's missing always...is flight data," Ess said.
"Understanding how we can improve our modeling tools for an Ares 1 or an Ares 5, or any launch vehicle, is really the whole key of 1-X, and it has been since the beginning."
The Ares 1-X has received no direction to halt work from senior NASA officials.
"Someone way above our pay grade can shut us down at their discretion, but we've got no direction or indication that we are not going to fly this rocket," Jon Cowart, Ares 1-X deputy mission manager, said in an interview earlier this month.
Most of the test flight's $350 million price has already been spent.
"There's almost nothing in front of us," Ess said.
But officials acknowledged the committee's work is palpable.
"Certainly in the background is the Augustine Commission and where NASA is headed," Ess said. "I'll admit that is a distraction. You can't get away from it. It's everywhere."
Ess said his managers are trying to maintain the focus of the roughly 250 workers on the project.
"Our team is totally focused on this rocket and totally committed. The Augustine Commission and NASA Administrator will do their thing and then make a decision. We're going to let them to do that," Ess said.
More than 700 sensors scattered throughout the 1.8 million-pound rocket will gather detailed readings of temperatures, pressures, acceleration and other data points during the launch.
"To get these 700 sensors for data is something that engineers have been screaming for us to go do. It really applies to whatever class of launch vehicles you want to go work," Ess said.
Technicians finished stacking the slender booster Aug. 13, wrapping up a month of lift operations inside the VAB.
"Since we stacked the vehicle, morale is at an all-time high. This is superb. When you see this rocket, you'll understand what I'm talking about. This is a monster," Ess said.
The rocket includes a stock four-segment solid rocket booster from the shuttle program, a simulated fifth segment of the first stage, a dummy second stage, and a mock Orion capsule, where the crew would be seated for liftoff during a real launch.
http://www.spaceflightnow.com/ares1x/090823future
Augustine Review: October summit set to reveal NASA’s forward path (http://www.nasaspaceflight.com/2009/09/augustine-review-october-summit-set-to-reveal-nasas-forward-path/)
The strategic direction of NASA is set to be announced in the first week of October, when new administrator Charlie Bolden and Human Space Flight Review panel chairman Norm Augustine conduct a NASA Executive Summit for all Senior Executive Service employees. The news came as center and space industry directors continue to tell their staff to keep their focus during “this period of uncertainty.”
NASA’s Forward Path (Mr Coats):
Continued uncertainty surrounds the direction NASA will be steered over the coming years and decades, ranging from an extension to the shuttle program, to an affordable and potentially ambitious exploration plan – with the ultimate decision to be taken by the Obama administration.
With a shuttle mission currently on orbit, Johnson Space Center (JSC) director Mike Coats made an address to his workforce, asking them to remain focused on the near term. Interestingly, he also gave his strong backing to a Constellation Program that is in real danger of being cancelled – which has led to an increase of lobbying in support of continuing with the Ares program recently.
“During this period of uncertainty regarding the future of Human Space Flight, I wanted to keep you informed of what we know and what we don’t know,” noted Mr Coats on an internal address acquired by L2.
“First of all I want to congratulate the Constellation team and everyone who supported the Orion Preliminary Design Review (PDR). I can fully appreciate the tremendous amount of hard work that goes into achieving a major milestone like the PDR, and I extend my thanks to all of you involved in making it so successful.
“Like any program at this stage there are a handful of technical issues yet to be resolved, but none are serious and it is obvious the entire Constellation Team is working extremely well together. I am looking forward to the (second attempt of the) DM-1 motor firing in Utah, the Ares I-X launch next month at KSC, and the first Pad Abort test early next year. The progress across the board on the Constellation Program is impressive.”
Interesting, Mr Coats followed his comments about being “impressed” with the Constellation program, by noting he is “quite proud” of the program that is successfully launching humans and hardware into space right now, by noting his backing for the recent slips to the last few launch dates in order to ensure safe flight.
“I’m also quite proud of the effort that went into launching our two Shuttle missions this summer. Bill Gerstenmaier/Associate Administrator, Space Operations Mission Directorate, and John Shannon/Shuttle Program Manager, emphasize repeatedly that we will launch our missions only when it’s safe to do so.
“That’s exactly the right attitude, and I’m confident we will fly out the remainder of the Shuttle manifest safely and complete assembly of the International Space Station (ISS).”
After praising the achievements of the ongoing STS-128 mission, Mr Coats then moved on to the subject of the Augustine Review, outlining the well-know options of extending shuttle and the ISS, but also noted what appears to be a key date for the Agency in October – before stressing the workforce needs to continue to be focused on the current plan, until they are told different.
“All of us have been waiting for the results of the Review by the Human Space Flight Plans Committee, otherwise known as the Augustine Panel. The Panel has begun to provide preliminary briefings to summarize their findings, but a final written report will probably not be published until later this month,” added Mr Coats’ address.
“NASA senior management is studying the Augustine Panel briefings and is meeting several days a week to develop a NASA recommended strategy to present to the Administration. NASA Administrator Charlie Bolden and Panel Chairman Norm Augustine are currently scheduled to testify to Congress on September 15 and 16, although that may slip until the Augustine report is published.
“Mr. Bolden has scheduled a NASA Executive Summit for all Senior Executive Service employees in Washington on Oct 6 and 7 to discuss strategic direction for the Agency. We will keep you informed of events as they unfold.
“NASA Administrator Charlie Bolden has stated clearly that we should proceed with our current program, which has been authorized and funded by Congress, until and unless the Administration and Congress direct otherwise.
“Our most powerful message to the American public is continued mission success in our profession of space exploration. Keep up the terrific work!”
MSFC’s Forward Path (Mr Lightfoot):
Newly appointed Marshall Space Flight Center (MSFC) director Robert Lightfoot made his first All Hands address to his workforce last week, saying they will deal with any changes to the forward path “as a team”.
Marshall has the most to lose if the Ares program is cancelled, especially if the favored option results in a commercial launch vehicle, such as an EELV (Atlas V-Heavy, Delta IV-Heavy).
“We’ve got the skills, the tools and the capabilities, and if you don’t have those, you don’t have a mission,” noted Mr Lightfoot in the Marshall Star. “There’s a lot to be done. No matter how it comes out, this team is going to be involved.”
Although previous MSFC comments relating to the Augustine Review have stated that the Marshall Center will be involved in any plans to launch humans into space, Mr Lightfoot told his workforce that they will soon know what the future will hold for the center, and to continue to focus on developing Ares.
“Just keep doing what you’re doing,” he added. “We’ll have an answer soon, and we’ll deal with it as a team. As Marshall.”
United Space Alliance’s Forward Path (Mr Covey):
USA head Dick Covey – one of the key supporters for extending the shuttle program beyond 2010 – also sent out an address to his workforce in relation to the upcoming delivery of the Augustine Review findings.
Mr Covey is in charge of a workforce that will suffer the brunt of the job losses, based on the current plan to retire shuttle and then endure a six year – or more – gap to the first operational flight of Ares I and Orion.
“For the past few months, the Review of U.S. Human Space Flight Committee, led by Chairman Norm Augustine, has been conducting a thorough assessment of numerous options for the future of our Nation’s space program.” noted Mr Covey in an address acquired by L2.
“This review has been enlightening and educational as presenters from industry, academia and the general public have openly discussed a wide variety of options for our Nation’s future human space flight program. Since we anticipate extensive media coverage surrounding the committee’s final report, I think it is important to discuss what the committee’s work will mean to United Space Alliance.”
As expected, Mr Covey focused on the extension of the shuttle to 2011, which would be based on a manifest stretch of the remaining flights on the current schedule. Plans to extend past that point are available for an additional year of operations – to 2012, and the more costly 2015 option.
“The committee was chartered to ‘identify and characterize a range of options that spans the possibilities for continuation of U.S. human space flight activities beyond retirement of the Space Shuttle.’ We know from the committee’s public discussions that there is consensus among committee members that the Shuttle should, at an ‘absolute minimum’ fly out the current manifest even if it means flying into FY 2011.
“There is also agreement that the ISS should be extended to 2020 if the budget can accommodate this extension. The committee has expressed concerns about the budget and schedule for the Ares I and Orion programs, and considered alternative approaches as well as alternative budget profiles.”
Mr Covey also stressed the Augustine Commission are only presenting options, and no decisions or changing of course would occur until the Obama administration makes the decision on NASA’s forward path.
“As stated in its charter, the committee’s report will present options – not recommendations – and the national debate will continue – not end – with the completion of the panel’s work.
“A wide variety of options are being considered, and multiple factors, the most significant of which will be the NASA budget, will be debated and taken into consideration as the President outlines his vision for human space flight. We can anticipate that the debate in Washington, D.C., and in the news media will continue until a decision is made.”
The references to the media are likely based on ensuring his workforce keep focused on the missions, rather than the unavoidable play-by-play on the fate of both the shuttle program – and the program that will succeed it – in the media. To which ends, Mr Covey also stressed his workforce needs to concentrate on what they are doing right now, even though his address ironically was sent out whilst most of his workforce were doing just that.
“At USA, we will continue to support and engage in the evaluation of the various options. As this process moves forward, we will continue to provide information and context to you. Regardless of how the issues are resolved, our primary goal must continue to be flying each and every mission as safely and successfully as possible.
“We cannot allow ourselves to become distracted or lose our focus on the job immediately ahead of us. We must increase our efforts to make safety the top priority and never hesitate to call a ‘time-out’ when needed. Our contribution to the future of human space, now and in the future, will be to remain committed to excellence in all that we do.”
SD HLLV:
With the Constellation Program continuing their development of the Ares and Orion vehicles, the options relating to a change of path for NASA are also refining their plans.
An impressive EELV-based exploration architecture is understood to be making huge strides behind the scenes, in preparation for being one of the frontrunners in the conclusions of the Augustine Review report. While the SD-HLLV (Shuttle Derived Heavy Lift Launch Vehicle – or HLV for short) is still being worked on within the Space Shuttle Program (SSP).
The latest updates point to a focus on the Lunar Reference Mission via the utilization of the HLV, while costings are refined through their preparations for being the Augustine Panel’s option of choice.
“Preliminary data is showing that with an LOR approach and two HLV launches, we can get a 33-34 metric ton lander,” added the latest notes from the Shuttle Standup/Integration reports on L2. “The team reviewed the re-costing analysis for the HLV. It is pretty much the same was what they had provided early. Continue to make progress.”
In fact, all of the recent notes that have referenced the HLV work have been positive, with the architecture soon to be reviewed by NASA managers as high as NASA Associate Administrator for Space Operations, Mr Bill Gerstenmaier.
“Pulled together a brief overview for John Shannon, and ready to brief him on a Lunar Reference Mission,” added a note on the Standup at the end of last week. “Hope to take the Lunar Reference Mission brief to Bill Gerstenmaier soon.
“Have consummated a plan for the avionics and flight software, similar to the Shuttle. It makes maximum use of the Shuttle capability and hardware. It supports a human rating requirement, if needed.”
This vehicle – along with the Direct heavy-lifters known as the Jupiter family – have already been classed as the most favorable options to work alongside an extension of the shuttle program by the Augustine Review panel. However, all of the recent work on “extension” has focused solely on continuing operations to 2011.
Shuttle Extension:
The latest studies have been conducted from a departmental standpoint, showing costings and issues with extensions of six months and 12 months on top of the current manifested end date for the shuttle near the end of 2010.
Interestingly, several presentations – acquired by L2 – work on the basis of a set list of assumptions, which request a focus on the potential impacts to the Constellation Program.
“Assessed 6 month and 12 month Shuttle extension options. Evenly spaced flights. Retention of current Constellation budget! No schedule relief of Constellation milestones. Flex utilization of workforce to support both programs – critical skill protected by the integrated team!,” opened the “key assumptions” note on one departmental presentation.
That presentation continues by pointing out that extending shuttle, based on the current roadmap for Constellation, holds several major risks that need to be addressed via assurances a small extension to shuttle would be fully funded, as opposed to hand outs and job sharing with the Constellation Program – which the presentation notes will be where the priority funding is currently targeted for from 2011.
“Greater demand for skill sharing. SSP highest priority today – beyond SSP mission prep & OPS, Cx will be priority in 2011. Tougher trade in meeting Cx milestones with Shuttle requirements. Reduced capacity responding to Shuttle anomalies/issues. Increased need to track and assess vehicle anomalies (prelaunch),” noted “risks” on one of the presentations.
“Budget covers only modest issue tracking. Vehicle aging and processing attention-to-detail may impact systems health. Workforce morale may degrade vehicle preparation integrity. Critical skills attrition: Potential for most experienced/senior people to transition to leadership roles with Cx. Economy improves and return to around 15 percent attrition.
“No resource margin in FY11 – large management challenge. Must have FY11 Cx budget to protect critical skill levels!!!”
These concerns appear to be the mirrored in all recent extension documentation, which note the capacity is there to extend the shuttle manifest, but only with the required workforce and funding support – due to the shoftfall that has already been noted for the Constellation Program based on the current budget projections.
More will follow on NASA’s options via the Augustine Review in the coming week.
Come riferimento per "dare un contesto" al peso del lander citato nel paragrafo "SD HLLV" (33-34 tonnellate) il LM originale pesava 14.5 tonnellate.
Alle 21 (ora italiana) c'è il test statico* di un "five-segment Developmental Motor" (DM-1), ovvero un SRB a 5 segmenti. Si può seguire il test su NASA TV - Education Channel (http://forum.nasaspaceflight.com/index.php?topic=15701.msg475848#msg475848)
*nel senso che viene acceso, ma rimane fissato al suolo. Penso sia come quello che si vede in questo video (http://www.youtube.com/watch?v=sacWtlTkDrs) (minuto 5.17)
Alle 21 (ora italiana) c'è il test statico* di un "five-segment Developmental Motor" (DM-1), ovvero un SRB a 5 segmenti. Si può seguire il test su NASA TV - Education Channel (http://forum.nasaspaceflight.com/index.php?topic=15701.msg475848#msg475848)
*nel senso che viene acceso, ma rimane fissato al suolo. Penso sia come quello che si vede in questo video (http://www.youtube.com/watch?v=sacWtlTkDrs) (minuto 5.17)
Ha, mi sono collegato giusto in tempo per il Boom di inizio :D
Io sono dovuto uscire e mi sono perso la diretta :mad:
NASA and ATK Successfully Test Ares First Stage Motor (With Video) (http://www.spaceref.com/news/viewpr.html?pid=29146)
NASA and industry engineers lit up the Utah sky Thursday with the initial full-scale, full-duration test firing of the first stage motor for the Ares I rocket. The Ares I is a crew launch vehicle in development for NASA's Constellation Program.
ATK Space Systems conducted the successful stationary firing of the five-segment solid development motor 1, or DM-1. ATK Space Systems, a division of Alliant Techsystems of Brigham City, Utah, is the prime contractor for the Ares I first stage. Engineers will use the measurements gathered from the test to evaluate thrust, roll control, acoustics and motor vibrations. This data will provide valuable information as NASA develops the Ares I and Ares V vehicles. Another ground test is planned for summer 2010.
"With this test, we have taken lessons learned from many years of experience in solid rocket motor development and have built on that foundation," said Alex Priskos, first stage manager for Ares Projects at NASA's Marshall Space Flight Center in Huntsville, Ala. "Our team collected data from 650 sensors today to evaluate the motor's performance. This test and those that follow are essential to understanding as many aspects of our motor as possible, including strengths and weaknesses, and ultimately delivering the safest and most reliable motor possible."
This was the second attempt to conduct the two-minute rocket test at ATK's test stand in Promontory, Utah. The first test on Aug. 27 was canceled with 20 seconds left in the countdown because of a problem with a component of the ground controller unit, which sends power to the system that moves the nozzle during the test. Through a detailed investigation, the engineering team pinpointed the problem and replaced the faulty part.
The first stage motor will generate up to 3.6 million pounds of thrust, or lifting power, at launch. Although similar to the solid rocket boosters that help power the space shuttle to orbit, the Ares development motor includes several upgrades and technology improvements implemented by NASA and ATK engineers.
Motor upgrades from a shuttle booster include the addition of a fifth segment, a larger nozzle throat, and upgraded insulation and liner. The forward motor segment also has been improved for performance by adding another fin, or slot in the propellant. This change in the geometry of the propellant provides additional surface area for burning the solid fuel, which results in greater thrust.
The DM-1 nozzle throat is three inches wider in diameter than the nozzle used for the shuttle. The bigger nozzle throat allows the motor to handle the additional thrust from the five-segment booster. It also meets NASA's structural requirements to stay within the pressure capacity of the existing steel cases -- the large, barrel-shaped cylinders that house the fuel -- ensuring safety and reliability. Upgrades also were made to the insulation and liner that protect the first stage's steel cases.
The motor cases are flight proven hardware used on shuttle launches for more than three decades. The cases used in this ground test have collectively flown on 48 previous missions, including STS-1, the first shuttle flight.
Marshall manages the Ares Projects and is responsible for design and development of the Ares I rocket and Ares V heavy cargo launch vehicle. NASA's Johnson Space Center in Houston manages the Constellation Program, which includes the Ares I, Ares V, Orion crew module and Altair lunar lander. The program also includes multiple project teams at NASA centers and contract organizations around the United States.
Qui (http://www.youtube.com/watch?v=rsPnkJ5vLfc&eurl=http%3A%2F%2Fwww.spaceref.com%2Fnews%2Fviewpr.html%3Fpid%3D29146&feature=player_embedded) il video del test.
Articolo molto interessante sull'architettura proposta da ULA per l'esplorazione lunare (e non):
ULA claim gap reducing solution via EELV exploration master plan (http://www.nasaspaceflight.com/2009/09/ula-claim-gap-reducing-solution-via-eelv-exploration-master-plan/)
Per stimolare l'attenzione dico che Orion in questa architettura non ha i pannelli solari, ci sono i "propellant depot" e Altair non assomiglia per niente all'LM stile "Apollo".
"An impressive EELV-based exploration architecture is understood to be making huge strides behind the scenes, in preparation for being one of the frontrunners in the conclusions of the Augustine Review report."
Consegnato da ATK il primo prototipo di Orion CM in compositi (http://www.forumastronautico.it/index.php?topic=11861.0)
ATK ha consegnato alla NASA il primo prototipo per un Modulo di Comando di Orion realizzato interamente in materiali compositi e pronto per iniziare i test strutturali previsti per il collaudo.
I materiali compositi grazie alle loro proprietà di leggerezza e rigidità sono sempre più utilizzati in tutto il settore aerospaziale e anche in questo caso l'obiettivo è quello di ridurre sensibilmente il peso della struttura principale di Orion guadagnando payload e mantenendo inalterate le caratteristiche di robustezza e rigidità del mezzo.
Il modulo consegnato verrà ora sottoposto Langley Research Center ad una intensa campagna di test distruttivi per la validazione delle soluzioni adottate, simulandone i comportamenti al lancio, in orbita, durante il rientro e in tutti i casi di abort.
Il modulo è realizzato secondo le più innovative tecniche di costruzione con materiali compositi, è strutturalmente composto da due macro-sezioni, quella superiore e quella inferiore unite insieme tramite incollaggio e curate senza l'utilizzo di autoclavi.
Anche il sistema di incollaggio fra parti matelliche con la struttura principale è di nuova concezione e interamente sviluppato da ATK.
In inglese:
A Crew Module Structure Made of Composite Materials
(http://www.onorbit.com/node/1604)
ATK: Alliant Techsystems has delivered a technological first to NASA: a full-scale, crew module structure made of composite materials. The Composite Crew Module (CCM) is a unique capsule design that has the potential to reduce the overall weight of future manned launch vehicles.
Composite structures reduce launch costs through weight savings and are presently used on a variety of space launch vehicles and aerospace structures. However, the CCM is unique in that it was specifically designed and built to resemble a space capsule. Full-scale structural testing will be performed at NASA's Langley Research Center to determine the strength and viability of the composite structure. During the destructive testing, the CCM will be placed under load conditions similar to those observed during launch, on-orbit, landing, and abort scenarios.
Led by the NASA Engineering and Safety Center (NESC), ATK was part of a team of NASA and industry experts who designed and fabricated the CCM to demonstrate how composite materials could be used to develop a pressurized space capsule. ATK is a major composite manufacturer and supplier for modern military and commercial aircraft, and space launch vehicles. ATK provided composites design, analysis, manufacturing and assembly expertise for the CCM program.
"ATK has decades of experience in building composite structures for launch vehicles, military aircraft, and most recently commercial aircraft such as the Airbus A350," Jack Cronin, President, ATK Mission Systems. "We have applied our innovative engineering and manufacturing capabilities to help the CCM team build a cutting-edge, composite space structure. We demonstrated our ability to perform, partner and deliver an advanced composite structure that's never been built for NASA."
Fabricated and assembled at ATK's Iuka, Miss. facility, the CCM combines some of the most advanced composite manufacturing technologies in use today. Constructed in two primary sections, the upper and lower shells are joined together with a splice joint and cured using out-of-autoclave technology. The bonding of the composite assemblies and integration of metal hardware were achieved by combining existing technology and ATK's innovative manufacturing processes.
ATK is a premier aerospace and defense company with more than 18,000 employees in 22 states, Puerto Rico and internationally, and revenues of approximately $4.8 billion. News and information can be found on the Internet at www.atk.com.
SFN:
Ares 1-X rocket arrives at launch pad for test flight
BY STEPHEN CLARK
SPACEFLIGHT NOW
Posted: October 20, 2009
The Ares 1-X demo booster was carted to its launch pad early Tuesday, arriving at a complex that underwent a multi-million dollar facelift to support the one-off test flight for NASA's next-generation moon program.
http://www.spaceflightnow.com/ares1x/091020pad/32b.jpg
The 327-foot-tall rocket, bolted to a shuttle mobile launch platform, arrived at the pad at 9:17 a.m. EDT (1317 GMT) after a nearly eight-hour sojourn from the Vehicle Assembly Building to launch pad 39B.
The mammoth crawler-transporter lowered the launch deck atop pedestals at the pad, officially completing the rollout.
The skyscraping rocket is the tallest booster to dot the Cape Canaveral skyline since the Saturn 5 moon rocket last flew in 1973.
"This is just a test rocket and it's larger than any other rocket on the planet," said Jon Cowart, the deputy mission manager.
Scheduled to launch next Tuesday, the $445 million mission will hand engineers data on the environments the Ares 1 rocket will encounter during the first two minutes of flight.
The rocket is made up of a scaled-down four-segment solid rocket booster first stage and aerodynamic simulators for the Ares 1's upper stage, the Orion crew module and the launch abort system.
Cowart said the next few days will be spent servicing the first stage's hydraulic steering system to prepare for a hotfire of the unit later this week.
A countdown simulation is on tap for Thursday and all of the rocket's computers and parts will be exercised in an integrated systems test.
"We've got to do a lot of prep work for that. We'll power up the rocket, let it do a countdown, let it think that it's reached T-zero and going to go fly and make sure the rocket responds correctly," Cowart said.
An agency-level Flight Test Readiness Review is on tap for Friday to discuss preparations and a mound of open paperwork before launch.
Ares 1-X has three consecutive days to launch beginning Oct. 27 before the Air Force's Eastern Range is unavailable. That could force a delay until early November if the rocket does not get off the ground.
Launch pad 39B, now retired from service in the space shuttle program, was modified to support the test flight.
The agency spent more than $13 million for one-time modifications to the pad, plus another $28 million for construction of three new lightning towers that will be used for future Ares launches.
Engineers say the most significant change to the pad was the installation of a vehicle stablization system at the complex's 195-foot-level.
"This is a large structure that has dampers and springs. Once the Ares 1-X vehicle gets out to the launch pad, we will grapple onto it. And that will help if for whatever reason the winds pick up over the next week to stabilize that vehicle and keep it from moving too much so we can continue work inside," said Mike Stelzer, the Ares 1-X ground systems project manager.
Technicians will quickly attach the stabilizer arm to the rocket because it helps protect the slender vehicle against strong winds.
"The first thing we do when we get out here is we go ahead and provide access to the vehicle for the crew to get up there on the stabilizer. We'll rotate the stabilizer arms together and then begin to grapple the vehicle. That's really one of the first things we do after the mobile launch platform is hard-down at the pad," Stelzer said.
The new wind damper system was put at the location that used to hold the orbiter access arm, the pathway astronauts followed when boarding space shuttles.
After the vehicle stabilization system is extended, engineers will next move other access platforms into place before wheeling the rotating service structure around the rocket Tuesday afternoon.
The gaseous oxygen vent hood, a white object commonly called the "beanie cap," was also removed and replaced with an upper stage access platform and environmental control system ducting.
The new plumbing will control the atmosphere inside the upper stage simulator during the pad stay.
A third change to the launch pad was the addition of a small balcony-like arm on the rotating service structure. When the structure is extended, the platform will give engineers access to the rocket's primary avionics bay near the top of the first stage.
Three hard-to-miss lightning towers were also erected last winter. The 602-foot-tall masts will be the only structures left at pad 39B when the complex is demolished in the next couple of years during another round of modifications for future Ares launches.
Plans call for the lightning protection system to be used by operational flights of the Ares 1.
But for now, workers have only strung a single catenary wire between two of the masts. That will provide enough shielding from lightning strikes for Ares 1-X's one-week stay at the complex.
"There's still more work to do on the lightning protection system, but we got it to give us a good amount of protection for Ares 1-X," Stelzer said.
Another big change at the launch pad was the removal of the shuttle-era lightning tower atop the complex's primary structure.
Engineers also rigged the pad with several dozen pressure, acoustic and vibration sensors to characterize how the complex holds up against the launch.
Officials predict Ares 1-X will put more stress on the pad than a typical shuttle launch.
"Because the drift of Ares 1-X potentially could be much different from shuttle, we actually had to do a lot of beef-up to some of the FSS structure because if it drifts a certain way we could get some plume impingement and see higher loads," said Bill Stover, the missions's deputy ground systems project manager.
Flight designers have programmed the rocket to execute a slight avoidance maneuver moments after liftoff to keep from damaging the pad with its fiery hot motor plume.
The rocket's nozzle will be gimbaled about 1 degree for the "walk off" maneuver.
"We've designed a flyaway maneuver for the nozzle to cant over ever so slightly -- 1 degree -- not that much to us, but with 2 million pounds of thrust, that's going to take the vehicle and help it to fly away from the pad," Stelzer said.
Stover said engineers predict there will be about 15 feet of clearance between the pad and the rocket at liftoff, so there is no threat of physical contact. Officials are only concerned about the affects of the booster's plume.
http://www.spaceflightnow.com/ares1x/091020pad/index.html
Alcune suggestive immagini del rollout:
http://www.spaceflightnow.com/ares1x/091020rollout/01.jpg
http://www.spaceflightnow.com/ares1x/091020rollout/02.jpg
http://www.spaceflightnow.com/ares1x/091020rollout/05.jpg
http://www.spaceflightnow.com/ares1x/091020rollout/10.jpg
http://www.spaceflightnow.com/ares1x/091020rollout/11.jpg
http://www.spaceflightnow.com/ares1x/091020rollout/14.jpg
http://www.spaceflightnow.com/ares1x/091020rollout/27.jpg
http://www.spaceflightnow.com/ares1x/091020rollout/31b.jpg
http://www.spaceflightnow.com/ares1x/091020rollout/33b.jpg
http://www.spaceflightnow.com/ares1x/091020rollout/37b.jpg
http://www.spaceflightnow.com/ares1x/091020rollout/40j.jpg
Altre foto: http://www.spaceflightnow.com/ares1x/091020rollout/
A vedere quel coso mi sembra sempre strano che possa decollare e non destabilizzarsi subito :fagiano:
+Benito+
22-10-2009, 13:56
in effetti è veramente mastodontico, e durante il trasporto dal VaB al pad non oso immaginare che rischi ci siano nel caso salga un vento anche solo un po' forte, è altissimo e fa tanta vela, oltre che essere intrinsecamente instabile così a vedere come è distribuita la massa.
Anche sul pad non mi da tanta fiducia, ma forse è solo la disabitudine a vedere oggetti così sproporzionati
ma forse è solo la disabitudine a vedere oggetti così sproporzionati
direi di si... :D
cmq non è che faccia davvero così tanta "vela", la superficie è poca in confronto, piuttosto - come hai detto tu, alla massa e la sua distribuzione. Detto questo, certamente ci sono limiti di vento sostenuto e raffiche (come per qualsiasi "stack" che fa un rollout al pad) ma sono tutti parametri tenuti in considerazione e non poi così bassi. La stessa giornata del rollout dell'Ares-1X è stata molto ventosa.
Cmq l'Ares è tenuto ben saldo dagli meccanismi di ritenuta che tengono "ancorato" lo shuttle quando si accendono i motori principali, i quali, ricordo, producono qualcosa come 540 tonnellate di spinta a livello del mare! :read:
Pubblicato il rapporto finale del comitato di revisione del programma spaziale umano americano:
http://www.nasa.gov/offices/hsf/meetings/10_22_pressconference.html
(pdf, 7,7 Mb).
---
Augustine panel submits final report on spaceflight options
BY WILLIAM HARWOOD
STORY WRITTEN FOR CBS NEWS "SPACE PLACE" & USED WITH PERMISSION
Posted: October 22, 2009
Amid work to ready NASA's Ares I-X rocket for a long-awaited test flight next week, a presidential panel charged with reviewing the nation's manned space program submitted its completed report Thursday, concluding NASA's planned shuttle replacement will cost too much and take too long to build to be a viable option.
http://www.spaceflightnow.com/news/n0910/22augustine/report.jpg
Even so, panel members said they looked forward to the $445 million test flight Tuesday and the data it will generate to help validate computer models and processes that will be useful in any future rocket design efforts.
"We do think it's appropriate to fly the Ares I-X," said Norman Augustine, former CEO of Lockheed Martin and chairman of the U.S. Human Spaceflight Plans Committee. "We think there are important things to be learned that will help the program."
The panel's completed report contained no major surprises - an executive summary was released in September that included the same five basic options for future manned space activity - but the coincidental timing of the report and next week's test flight highlighted the uncertain future of NASA's plans to replace the space shuttle and return to the moon.
-
http://www.spaceflightnow.com/news/n0910/22augustine/
Bolden ha ordinato a un team del Marshall Space Flight Center di valutare (con la massima priorità) qual'è il migliore tra i veicoli heavy lift:
Bolden Directs MSFC Special Team to evaluate HLV alternatives (http://www.nasaspaceflight.com/2009/10/bolden-directs-msfc-special-team-to-evaluate-hlv-alternatives/)
NASA Administrator Charlie Bolden has asked for a “Special Team” at the Marshall Space Flight Center (MSFC) to evaluate the Heavy Lift alternatives – including DIRECT’s Jupiter launch vehicle – as a “top priority”. The team has been asked to create a report on their findings in time for Thanksgiving, in an apparent reaction to the final Augustine Commission report – which will be published on Thursday.
SD HLLV (HLV) Latest:
The Space Shuttle Program (SSP) is coming to the end of an evaluation phase on the “currently favored” Heavy Lift Vehicle (HLV) – otherwise known as the Shuttle Derived Heavy Lift Launch Vehicle (SD HLLV), as they move into a consultation period with the Constellation Program (CxP).
The vehicle, side mounted to the current design of the External Tank, is a true Shuttle Derived concept, with heritage from a previous concept known as Shuttle-C. The concept is capable of launching 80mt (metric tons) into Low Earth Orbit (LEO) and around 54mt to the moon.
...
HLV Special Team/Jupiter:
It was via an update on last week’s Standup report that the first mention was made relating to a “Special Team” that has been ordered to evaluate the other HLV alternative vehicles. With the SSP HLV team asked to support this MSFC-based effort, the standup noted this had become the top priority.
“HLV has been asked to support a special team looking at evaluating HLV alternatives,” noted the report. “The HLV Team is now treating this as a top priority. A report will be ready by Thanksgiving.”
Further inquires into the specific evaluations being carried out by the Special Team revealed that all viable – per the Augustine Commission’s initial options – HLV alternatives are being looked at “fairly”, with General Bolden himself responsible for ordering the report.
Sources note that the DIRECT team’s Jupiter launch system – an updated version of MSFC’s very own NLS (National Launch System) concept from the 1990s – has dominated early discussions at the Special Team meetings.
...
jumpjack
23-10-2009, 08:20
Alcune suggestive immagini del rollout:
http://www.spaceflightnow.com/ares1x/091020rollout/40j.jpg
mamma mia, il razzo piu' brutto della storia! :sofico:
ma 'sti cavoli, basta che funzioni! :D
SFN:
Ares 1-X test flight cleared for launch Tuesday morning
BY STEPHEN CLARK
SPACEFLIGHT NOW
Posted: October 23, 2009
Senior NASA officials convened at the Kennedy Space Center on Friday and formally approved plans to launch a $445 million test flight of the next-generation Ares 1 rocket next week.
http://www.spaceflightnow.com/ares1x/091023ftrr/ares1x.jpg
"This team has done a tremendous job getting to this point in the flow," said Doug Cooke, associate administrator for NASA's exploration systems mission directorate.
The Ares 1-X rocket is set for liftoff during a four-hour window opening at 8 a.m. EDT Tuesday. During the six-minute, 144-mile flight, instruments will collect data on the vibrations, flexing, pressures, temperatures and acoustics the booster experiences.
"They've got to a point where there are really no technical issues, they've closed out their paperwork to this point. All they've got is the forward work to get to a Tuesday launch," Cooke said.
The information collected during the flight will be fed into computer models helping engineers design the real Ares 1 rocket, which is expected to debut some time between 2015 and 2017.
Friday's meeting, called a Flight Test Readiness Review, included input from a range of engineers and was overseen by top NASA managers. The review board unanimously cleared Ares 1-X for launch, Cooke said.
Also on Friday, teams were wrapping up the ground systems portion of an integrated test of all flight and ground equipment that will be used during Tuesday's countdown and launch.
The conclusion of the test came on the heels of a successful hotfire of the Ares 1-X first stage's auxiliary power unit Thursday night. The device drives the rocket's nozzle gimbal system that steers the vehicle during flight.
The launch team will conduct a countdown simulation all day Saturday. Workers at the pad will close out the rocket and connect pyrotechnic ordnance Sunday.
Monday will mostly be an off day for teams, and the countdown will commence at 1 a.m. EDT Tuesday.
Early weather forecasts look iffy for launch attempts next week. There is a 60 percent chance of violating weather rules Tuesday because of rain showers, ground winds and electrical charges in the atmosphere. There is a 40 percent chance of bad weather prohibiting launch Wednesday and Thursday.
"Weather is always a challenge, and next week will be no different," said Ed Mango, Ares 1-X launch director. "We have weather constraints for Ares 1-X that are different than you've seen on other vehicles around here because it's a 300-foot-tall rocket."
Ares 1-X is booked on the Air Force's Eastern Range for Tuesday and Wednesday. Thursday may not be available on the Range, but NASA would request a third launch opportunity if necessary.
"We are working to see if we can't get other opportunities on the Range, and we'll see how that goes in the next few days," Mango said.
If the flight slips beyond next week due to weather or technical issues, the Ares 1-X team may have to stand down for several weeks because of a busy launch schedule at neighboring pads at Cape Canaveral.
The Air Force-run network of communications and tracking sites supports all launches from the Space Coast on a first-come, first-served basis.
The Range is unavailable due to an unspecified activity beginning late next week. An Atlas 5 rocket is scheduled for a commercial satellite launch Nov. 14, followed by the launch of shuttle Atlantis around Nov. 16 and a Delta 4 booster a few days later.
"The month of November is very difficult on the Range in terms of trying to get space, but we want to be ready as soon as an opportunity opens up to jump on the Range at that time and try to go fly," Mango said.
If the upcoming launches stay on schedule, Ares 1-X may not have another chance to launch until the middle of November.
Officials would like to keep the rocket on the pad as long as possible to be ready to take advantage of any openings on the Range.
"After this particular window, we'll be working with (the vehicle team) to figure out how we can leave the vehicle at the pad, if at all possible, which is what we'd like to go do," Mango said.
-
http://www.spaceflightnow.com/ares1x/091023ftrr/
Lancio rinviato!
Unfavorable weather scrubs Ares 1-X rocket launch
http://www.spaceflightnow.com/news/images/ni0910/27ares1xpre_400260.jpg
Clouds and winds have forced a delay in the first experimental test flight of the hardware NASA is developing to replace the space shuttle. The next try for the Ares 1-X rocket blastoff would be 8 a.m. EDT (1200 GMT) Wednesday from Kennedy Space Center's modified pad 39B. Join us in the Mission Status Center for live play-by-play updates, a video webcast anchored by Miles O'Brien and an interactive chat!
-
http://www.spaceflightnow.com/ares1x/status.html
+Benito+
27-10-2009, 20:37
c'è la discussione a parte ;)
gearkratos
14-11-2009, 17:13
da inesperto in materia ho sempre avuto un debole per qualsiasi missione spaziale....
visto poco fa uno speciale su national geographic channel.... davvero molto molto interessante :D
MAF provide positive ET hardware overview for early SD HLV test flight (http://www.nasaspaceflight.com/2010/01/maf-provide-positive-et-hardware-overview-for-early-sd-hlv-test-flight/)
The Michoud Assembly Facility (MAF) have confirmed they have almost enough External Tank resources to allow for one ET-sized “In Line” Shuttle Derived Heavy Launch Vehicle (SD HLV) test flight and up to three Block I SD HLVs. The news comes as NASA managers insist the workforce should wait for official news, and not to be distracted by reports on Ares’ demise.
Bolden’s Key Speech:
NASA Administrator Charles Bolden will make the most important speech of his short tenure thus far on Monday, with the first clues on what will be a new direction for the Agency set to be revealed – based on the agency’s fiscal year 2011 budget.
As reported by NASASpaceflight.com on January 23, Ares I and Ares V’s battle to cling on to life – an uphill battle since 2008, when the internal schedules started to dramatically slip via funding and technical issues – was coming to an end, along with an obvious omission of a lunar program in NASA’s own interpretations of the Augustine Committee-driven Flexible Path plan.
A few days later, some of the mass media – led by the Orlando Sentinel – took the news a stage further, citing “insiders” as claiming the aforementioned were being officially cut from NASA’s future.
With the Sentinel’s article paraphrased and syndicated throughout the mass media and several other space sites, Constellation managers decided to act, informing the workforce on their official position.
“Orion Team: A few news bureaus and bloggers have been reporting on some major changes coming our way. Sometimes the number of reports gives the impression of validity when in fact they are all reporting on the same rumor,” noted Orion Project manager Mark Geyer, via one of several memos acquired by L2.
“I can tell you that I have not received any direction or information that would confirm what they are saying. That being said, it wouldn’t surprise me to find out that there will be some changes announced next week and that they may be significant.
“Again, I have no specific information on what that might be.”
See also NASASpaceflight.com’s Flexible Path Review:
Part 1: Battle of the Heavy Lift Launchers – Monster 200mt vehicle noted
Part 2: Manned mission to construct huge GEO and deep space telescopes proposed
Part 3: NASA Flexible Path Evaluation of 2025 human mission to visit an asteriod
Part 4: Taking Aim on Phobos – NASA outline Flexible Path precursor to Man on Mars
SD HLV Status:
“Some changes” may be underplaying the reality, with several NASA departments already carrying out evaluations on one of the major elements of the likely future path for NASA – moving away from Low Earth Orbit (LEO) based around the development of a Heavy Lift Launch Vehicle.
While Ares I’s role for International Space Station (ISS) missions heads to a commercial service provider, the HLV will be contracted out – not unlike NASA already does to some extent with the shuttle – moving to a multi-company effort led by Boeing, partnering with Alliant Techsystems, Lockheed Martin, Northrop Grumman, Pratt & Whitney Rocketdyne and United Space Alliance (USA), with heavy NASA involvement from Marshall Space Flight Center (MSFC).
As to how soon this vehicle will be developed will depend largely on available funding, with the question of shuttle extension still lacking a definitive answer, along with how the NASA budget will be reallocated over the next 10 years, based on purchasing commercial flight services to an ISS that will be extended to 2020.
While those questions are yet to be officially addressed, NASA managers are pushing forward at a healthy pace to work towards an “early” test flight of what is now heavily confirmed as based on the DIRECT team’s Jupiter-241 Stretched Heavy Launch Vehicle.
The early indications of achieving a fast-track approach to the SD HLV – especially when compared to the sluggish pace of Ares V’s development – are extremely encouraging, with the Space Shuttle Program (SSP) confirming available materials and required tooling are largely in place to construct a test flight vehicle, likely based on a normal “Shuttle” ET core.
This vehicle “could be ready to fly around late 2012″ according to MAF sources, which points to a regular shuttle Main Propulsion System (MPS) with three Space Shuttle Main Engines, along with two four segment Solid Rocket Boosters (SRB’s).
Ironically, the availability of SD HLV assets are mainly thanks to efforts made to protect for the possibility of a shuttle extension – especially at MAF, who have since confirmed they have enough materials and part-built tanks to construct no less than three new ET’s with materials to spare, with all of the shuttle ET tooling either still in-situ or protected in storage on site.
“Heavy Lift Launch Vehicle (HLV) (NASA/JSC): Had a good review. Talked about several applications to the Shuttle-derived and inline configurations and demonstrations. Reviewed the status of the SSME’s. Looks like we will have at least four Block II SSME flight sets to support that, and can probably get another engine or two from Block I or Phase II engines,” noted information on this week’s Shuttle Standup/Integration report (L2).
“It appears that quite a bit of the assets from the ET would be available, not only the tooling and processing, but the hardware. Probably would be enough hardware to support 90 percent of an inline ET demo, and then probably two or three Block I flights (80 percent of hardware per flight).”
A timeline of around 36 months has been cited for the stretched ET core configuration, although the question of a four SSME MPS – along with test stand requirements – needs to be addressed to provide a viable timeline for this configuration of vehicle to be ready for flight.
Regardless, the continued benefit of the HLV’s shuttle commonality is aiding the positive evaluations, as the SSP use the findings from their Sidemount review cycles to already move into a costing phase for the HLV.
“Had a good review of the infrastructure for the flight software, looking at not only the application of the Shuttle flight software to an inline vehicle configuration, but all the processing that goes along with it, including flight design, validation and verification. Most of that applies directly to an inline,” added the Standup report.
“Will look at the commonality between the payload carrier for side mount and the upper shroud for the inline. Hope by the end of the month to have a first cut of the cost for the inline to compare to the sidemount, and hopefully will have something to pass over to the Business Office for a more detailed cost.”
Early information also indicates that this new approach is receiving significant support within the US Congress, as it provides the needed means to transition from Shuttle to the new program with all the same benefits Ares was intended to produce.
Even the long-time Constellation supporter, Senator Richard Shelby (R-AL) is understood to be supportive of this alternate plan, along with many of his colleagues.
...
L' "In Line Shuttle Derived Heavy Launch Vehicle" sembra sempre più probabile. Si parla di un primo test nel 2012 utilizzando i componenti rimasti dalla fabbricazione degli ET dello Shuttle.
Il nuovo (http://www.hwupgrade.it/forum/showpost.php?p=30703479&postcount=62) budget (http://www.hwupgrade.it/forum/showpost.php?p=30703628&postcount=63) presentato (http://www.hwupgrade.it/forum/showpost.php?p=30703762&postcount=64) oggi azzera le sezioni relative a Constellation (a parte i $ necessari alla terminazione dei contratti).
Se verrà approvato dal congresso questo significa la cancellazione di Orion, Ares I e Ares V, che verranno sostituiti da un vettore/capsula forniti dal settore privato. Le modalità dovrebbero essere simili a quanto già avviene per le missioni robotiche: la NASA definisce e presenta i requisiti, tra le proposte del settore privato sceglie quella/e che considera migliore/i ed esercita un ruolo di controllo/supervisione.
Che fosse ormai in bilico il destino del programma Constellation era quasi certo, ora ci saranno tutti i passaggi al Congresso, ma rimangono da definire i tempi di approvazione delle possibili soluzioni.
La proposta NASA di budget per il 2011 è disponibile qui, assieme alle altre informazioni:
http://www.nasa.gov/news/budget/index.html
PDF: http://www.nasa.gov/pdf/420990main_FY_201_%20Budget_Overview_1_Feb_2010.pdf
I punti cardine sono:
- Aumento del budget a $6 miliardi nel periodo 2011-2015
- Termine del programma Constellation (almeno così come lo si intende ora)
- Sviluppo di un nuovo sistema HLV (Heavy-Lift Launch Veichle), ri-utilizzo di propulisioni esistenti (SSME-2?) e progettazione di nuove
- Nuovi accordi commerciali con i privati per LEO e Luna/Marte
- Estensione del supporto al programma ISS fino al 2020 e oltre
Che fosse ormai in bilico il destino del programma Constellation era quasi certo, ora ci saranno tutti i passaggi al Congresso, ma rimangono da definire i tempi di approvazione delle possibili soluzioni.
Vero, mi aspettavo però una ristrutturazione più conservativa... una cosi' mi sembra rischi di scontentare troppi politici (molti meno $ in certi stati) vedremo se la cosa passerà al congresso ed (eventualmente) con quali modifiche.
Spero si sbrighino però, non è il massimo perdere mesi e mesi in discussioni lasciando la NASA in uno stato di incertezza.
Aggiornata la prima pagina.
A sto punto meglio azzerare il programma costellation, anche quello privato e dedicare e risorse a sonde e ISS.
Importanti novità per il programma spaziale umano NASA verranno annunciate il 15/04/2010 dal Presidente Obama.
SFN:
Heavy-lift rocket, scaled Orion in Obama's plans
BY WILLIAM HARWOOD
STORY WRITTEN FOR CBS NEWS "SPACE PLACE" & USED WITH PERMISSION
Posted: April 13, 2010
As part of a sweeping post-shuttle change of direction for NASA, the Obama administration's shift to private-sector rockets and spacecraft will include government development of a new heavy-lift rocket for eventual manned flights to a variety of deep space targets including, ultimately, Mars, an administration official said Tuesday.
While committed to terminating the Bush administration's Constellation moon program, the president supports development of a scaled-down version of Constellation's Orion crew capsule for use as a space station emergency escape vehicle and possible technology test bed.
Speaking on background, a senior administration official said Tuesday the Orion capsule could be launched unmanned to the International Space Station using commercial rockets as part of a broad effort to reduce reliance on Russian Soyuz spacecraft.
The official said the use of a scaled-down version of Orion, along with the development of new private-sector rockets and capsules to replace the shuttle, would end NASA's reliance on Russia for space transportation services sooner than would have been possible with the Constellation program's Ares rockets.
The president will discuss his new strategy for NASA during a conference at the Kennedy Space Center on Thursday, outlining a series of robotic and eventual manned deep-space missions that will build in an evolutionary, step-by-step approach to eventual flights to Mars, the official said.
While no timetable for such flights will be specified, a decision on what sort of heavy lift rocket architecture to pursue will be made in 2015, based in part on advanced technologies research that will be funded at more than $3 billion over the next five years.
As previously announced, the administration's plan for NASA includes an additional $6 billion over the next five years to fund a variety of technology and infrastructure development efforts that by 2012 will result, the administration official said, in 2,500 more jobs at the Kennedy Space Center than would have been expected under Constellation.
Looming job losses across NASA's contractor workforce have cast a pall over the space program in recent months. With the shuttle program's retirement late this year or early next - only three more missions are planned beyond Discovery's current flight - some 7,000 jobs will be lost at the Kennedy Space Center alone, with thousands more at other NASA field centers.
The Obama administration's change of course for NASA will not restore the lost shuttle jobs, but the additional spending will more than make up for the expected Constellation losses, the official said. Along with a shift to commercial launch services, the administration plans a $2 billion upgrade to the Kennedy Space Center's launch infrastructure.
And in the near term, the administration will spend $40 million to fund an "economic development action plan" to help the local workforce make the transition.
Taken together, the new initiatives mark a "more ambitious space strategy" than Constellation offered, the official said, adding that critics who have charged the president's approach represents an end to government-sponsored manned spaceflight "are just flat wrong."
Development of a new heavy lift super rocket will "unlock the solar system," the official said, and do it sooner than would have otherwise been possible.
Whether these new elements - commitment to a heavy lift rocket and use of Orion technology - will satisfy the administration's critics in Congress and elsewhere remains to be seen.
In a recent open letter to the president signed by legendary Apollo flight directors Chris Kraft, Gene Kranz, Glynn Lunney and more than 20 former astronauts, including Apollo 13 commander Jim Lovell and Apollo 17 commander Gene Cernan, the administration's plan was criticized for ceding America's "hard earned global leadership in space technology to other nations."
"We are stunned that, in a time of economic crisis, this move will force as many as 30,000 irreplaceable engineers and managers out of the space industry," they wrote. "We see our human exploration program, one of the most inspirational tools to promote science, technology, engineering and math to our young people, being reduced to mediocrity."
In the wake of the 2003 Columbia disaster, President Bush decided to complete the space station and retire the shuttle by 2010. At the same time, he directed NASA to begin development of new rockets, capsules and landers to carry astronauts back to the moon by the early 2020s. NASA came up with the Constellation program to implement those directives, spending some $9 billion over the past five years.
But funding shortfalls resulted in a projected five-year gap between the end of shuttle operations and the debut of the Ares I rocket and Orion crew capsule. To bridge the gap, NASA is paying the Russians some $50 million a seat to launch U.S. and partner astronauts to the space station aboard Soyuz rockets.
During the presidential campaign, Obama expressed support for Constellation but after the election, he set up a panel of outside experts to review NASA's plans and how much they might ultimately cost.
The panel concluded NASA could not afford to implement Constellation, or any other reasonable exploration program, without an additional $3 billion or so per year, primarily to make up for earlier budget reductions. And that did not take into account the cost of operating the International Space Station beyond 2015.
The group favored a shift to commercial launch services to carry astronauts to and from low-Earth orbit while NASA focused on development of a new heavy-lift rocket system that would enable eventual flights to the moon, nearby asteroids or even the moons of Mars.
The Obama administration agreed with the idea of commercial launch services, but it did not explicitly embrace the "flexible path" approach to deep space exploration suggested by the panel, focusing instead on development of enabling technologies and somewhat vague long-range goals.
The result, administration officials said, was an affordable, more sustainable space program.
The new commitment to development of a heavy lifter may defuse at least some of the outside criticism. But the benefits of using a scaled-down version of Orion for space station crew escape are not as clear. Seats purchased on Russian Soyuz rockets include launch and landing and the capsules remain docked at the station throughout a crew's stay, available as emergency lifeboats if needed.
Former NASA Administrator Mike Griffin, chief architect of the Constellation program and a signer of the open letter to the president, said in an email "the people who are offering this plan are flailing."
Launching the capsules atop unmanned rockets would eliminate the need for complex abort systems, he said, but even unmanned rockets are expensive, the capsules would need an autonomous rendezvous and docking capability and they would have to be periodically replaced.
"The proposed 'Orion Lite' vehicles will not carry crew to the ISS," Griffin said. "Indeed, the first time they carry crew will be in an emergency. So we will need to replace them periodically to ensure that a fresh vehicle is available. ... Through all this we will have to continue to pay the Russians for crew transfer services until and unless commercial capability emerges.
"In the end, this seems like an expensive proposition that makes simply continuing to use the Russians for crew rescue look like a bargain."
http://spaceflightnow.com/news/n1004/13obama/
SFN:
Obama vows commitment to manned space exploration
http://spaceflightnow.com/news/images/ni1004/15obama_400220.jpg
President Barack Obama flew to the Kennedy Space Center Thursday to sell his new space policy, a radical change of course for NASA that would cancel the Constellation moon program and shift manned launches to private industry while NASA studies options for future deep space exploration.
http://spaceflightnow.com/news/n1004/15obama/
jumpjack
02-12-2014, 21:31
Ho trovato il "successore" di questo thread:
http://www.hwupgrade.it/forum/showthread.php?t=2393663
Domani, 4 dicembre 2014, viene lanciato il mezzo sperimentale "Orion Multi-Prupose Crew Vehicle (http://it.wikipedia.org/wiki/Orion_%28veicolo_spaziale%29)".
Il progetto Constellation muore, i razzi Ares I (http://en.wikipedia.org/wiki/Ares_I) e Ares V (http://it.wikipedia.org/wiki/Ares_V) si "estinguono" in favore di un unico razzo, SLS - Space Launch System (http://it.wikipedia.org/wiki/Space_Launch_System), ma il carico utile, lanavetta Orion/MPCV (http://en.wikipedia.org/wiki/Orion_(spacecraft)#Orion_MPCV) , rimane.
Fatto, iscritto anche su quello :)
Si Constellation è morto 3 anni fa, non abbiamo più aggiornato... però bisogna rinominare questo o l'altro in SLS! :O :)
NASA - Space Launch System Fact Sheet
http://www.nasa.gov/pdf/664158main_sls_fs_master.pdf
NASA.gov Space Launch System - Sito Ufficiale
http://www.nasa.gov/exploration/systems/sls
Wikipedia (en) - NASA Space Launch System
http://en.wikipedia.org/wiki/Space_Launch_System
Space.com - Space Launch System Latest News
http://www.space.com/topics/latest-news-nasa-space-launch-system
NASASpaceFlight.com - SLS News
http://www.nasaspaceflight.com/tag/sls
SpaceFlightNow.com - Orion EFT-1 Test Mission Live Coverage
http://spaceflightnow.com/2014/12/02/orion-eft1-mission-status-center
jumpjack
03-12-2014, 21:15
Secondo me sarebbe bene che questo thread venisse chiuso... come è successo al programma constellation.
Per seguire Le Nuove Avventure di Orion :) c'è quell'altro.
Ok vada per l'altro e lasciamo questo all'archivio per i posteri. :)
vBulletin® v3.6.4, Copyright ©2000-2025, Jelsoft Enterprises Ltd.